#include #include #include #include #include #include #include #include #include #include #include // 用于mkdir #include #include "cloudfront/code/interface.h" //lnk20250708 #include "cloudfront/code/rocketmq.h" //lnk20250708 #include "cloudfront/code/log4.h" //lnk20250924 #include "client2.h" #include "cloudfront/code/log4.h" using namespace std; SafeMessageQueue message_queue; // 全局消息队列 //时间转换函数 time_t ConvertToTimestamp(const tagTime& time) { struct tm t = {}; t.tm_year = time.DeviceYear - 1900; // tm_year 从 1900 开始计 t.tm_mon = time.DeviceMonth - 1; // tm_mon 从 0(1月)开始 t.tm_mday = time.DeviceDay; t.tm_hour = time.DeviceHour; t.tm_min = time.DeviceMinute; t.tm_sec = time.DeviceSecond; // 返回时间戳(本地时间) return mktime(&t); } //文件分割取字段 std::string extract_filename(const std::string& path) { // 查找最后一个'/'的位置 size_t last_slash = path.find_last_of('/'); // 如果找到'/',则返回'/'之后的部分 if (last_slash != std::string::npos) { return path.substr(last_slash + 1); } // 如果没有'/',直接返回原字符串 return path; } //文件crc校验函数 uint16_t crc_16_new(const uint8_t* buf, uint32_t len) { uint16_t crc = 0xffff; for (uint32_t i = 0; i < len; i++) { crc = (uint16_t)(crc ^ buf[i]); for (int j = 0; j < 8; j++) { if (crc & 1) { crc = (uint16_t)((crc >> 1) ^ 0xA001); } else { crc = (uint16_t)(crc >> 1); } } } return crc; } //消息处理逻辑 void process_received_message(string mac, string id,const char* data, size_t length) { // 实际的消息处理逻辑 std::cout << "Active connections: " << mac << " id:" << id << " size:" << length << std::endl; // 接收到消息后,先找到指定装置刷新对应最新通讯时间戳 ClientManager::instance().set_cloudmessage_time(id); //数据处理逻辑 if (length > 0) { // 将数据转为无符号类型以便处理二进制值 const unsigned char* udata = reinterpret_cast(data); //对数据消息的初步处理--登录报文格式解析不出来 MessageParser parser; bool bool_msgset = parser.SetMsg(udata, length); //云服务登录报文 if (udata[0] == 0xEB && udata[1] == 0x90 && udata[2] == 0xEB && udata[3] == 0x90) { //通讯状态报文 if (udata[8] == 0x01) { std::cout << "cloud login: " << mac << " state: " << static_cast(udata[16]) << static_cast(udata[17]) << static_cast(udata[18]) << static_cast(udata[19]) << std::endl; if (udata[19] == 0x10) { std::cout << "cloud login: " << mac << " state: success!" << std::endl; //装置登录成功 ClientManager::instance().set_cloud_status(id, 1); //设置了云前置登录状态为已登录 ClientManager::instance().read_devversion_action_to_device(id);//主动触发,读取装置版本配置信息,仅在装置登录后执行一次,当前获取版本信息确认对时报文结构。 //ClientManager::instance().get_dev_status(id);//设备在线情况判断 ture在线 false离线 //ClientManager::instance().set_real_state_count("D002", 1,1);//登录后测试实时 //ClientManager::instance().add_file_menu_action_to_device("D002","/etc");//测试文件目录读取 //ClientManager::instance().add_file_download_action_to_device("D002", "/etc/NPQS570_VX_ZJ_2(V103).icd");//测试文件下载 //ClientManager::instance().get_fixedvalue_action_to_device(id,1);//测试获取装置测点定值数据 //ClientManager::instance().get_fixedvaluedes_action_to_device(id);//测试获取装置定值描述 //ClientManager::instance().set_fixedvalue_action_to_device();//装置修改定值测试(参数需要外部提供) //ClientManager::instance().get_interfixedvalue_action_to_device(id);//装置获取内部定值 //ClientManager::instance().get_fixedvalucontrolword_action_to_device(id,1);//获取 1-内部定值描述 或者 2-控制字描述 //ClientManager::instance().set_interfixedvalue_action_to_device();装置修改内部定值测试(参数由外部提供) //ClientManager::instance().read_runninginformation_action_to_device(id);//主动触发,读取装置运行信息 //// 设置起始时间: 2025年9月1日 10:30:45 //std::tm start_time = {}; //start_time.tm_year = 2025 - 1900; // 年份从1900开始计算 //start_time.tm_mon = 8 - 1; // 月份从0开始 (0=一月) //start_time.tm_mday = 20; //start_time.tm_hour = 1; //start_time.tm_min = 1; //start_time.tm_sec = 1; //// 设置结束时间: 2025年9月4日 12:15:30 //std::tm end_time = {}; //end_time.tm_year = 2025 - 1900; //end_time.tm_mon = 8 - 1; //end_time.tm_mday = 25; //end_time.tm_hour = 1; //end_time.tm_min = 1; //end_time.tm_sec = 1; //ClientManager::instance().read_eventlog_action_to_device(id, start_time, end_time,2,1); /*DIY_ERRORLOG_CODE("111", 0, static_cast(LogCode::LOG_CODE_OTHER), "【ERROR】测试告警发送 前置"); DIY_ERRORLOG_CODE(id, 1, static_cast(LogCode::LOG_CODE_OTHER), "【ERROR】测试告警发送 设备"); std::string mpid; get_monitor_id_by_dev_and_seq(id, 1, mpid); if (!mpid.empty()) { DIY_ERRORLOG_CODE(mpid, 2, static_cast(LogCode::LOG_CODE_OTHER), "【ERROR】测试告警发送 测点"); }*/ } if (udata[19] == 0x00) { std::cout << "cloud login: " << mac << " state: fail!" << std::endl; //装置登录失败 关闭客户端连接 等待20秒重新登录 ClientManager::instance().restart_device(id); } } else { std::cout << "cloud login: " << mac << " state: error!"<< std::endl; //装置登录失败 关闭客户端连接 等待20秒重新登录 ClientManager::instance().restart_device(id); } //登录报文处理完毕,当前报文处理逻辑结束并返回 return; } //装置主动上送报文 暂态事件报文/暂态波形文件报文 if (udata[8] == static_cast(MsgResponseType::Response_Event)) { //处理主动上送的暂态事件报文 NewTaglogbuffer event = NewTaglogbuffer::createFromData(parser.RecvData.data(), parser.RecvData.size()); //获取测点id std::string mpid; get_monitor_id_by_dev_and_seq(id, 1, mpid); //判断事件逻辑是否需要上送告警 if (!mpid.empty()) { switch (event.head.LogCode) { case 2: DIY_ERRORLOG_CODE(mpid, 2, static_cast(LogCode::LOG_CODE_DEV_ALARM), "【ERROR】系统事件:突变量启动录波(NPQS-570特殊功能)"); break; case 21: DIY_ERRORLOG_CODE(mpid, 2, static_cast(LogCode::LOG_CODE_DEV_ALARM), "【ERROR】硬件告警事件:装置掉电"); break; case 22: DIY_ERRORLOG_CODE(mpid, 2, static_cast(LogCode::LOG_CODE_DEV_ALARM), "【ERROR】硬件告警事件:装置上电"); break; case 23: DIY_ERRORLOG_CODE(mpid, 2, static_cast(LogCode::LOG_CODE_DEV_ALARM), "【ERROR】硬件告警事件:时钟出错"); break; case 24: DIY_ERRORLOG_CODE(mpid, 2, static_cast(LogCode::LOG_CODE_DEV_ALARM), "【ERROR】硬件告警事件:AD采集出错"); break; case 25: DIY_ERRORLOG_CODE(mpid, 2, static_cast(LogCode::LOG_CODE_DEV_ALARM), "【ERROR】硬件告警事件:主存储器出错"); break; case 26: DIY_ERRORLOG_CODE(mpid, 2, static_cast(LogCode::LOG_CODE_DEV_ALARM), "【ERROR】硬件告警事件:内存出错"); break; case 31: DIY_ERRORLOG_CODE(mpid, 2, static_cast(LogCode::LOG_CODE_DEV_ALARM), "【ERROR】运行告警事件:程序升级成功"); break; case 32: DIY_ERRORLOG_CODE(mpid, 2, static_cast(LogCode::LOG_CODE_DEV_ALARM), "【ERROR】运行告警事件:程序升级失败"); break; case 33: DIY_ERRORLOG_CODE(mpid, 2, static_cast(LogCode::LOG_CODE_DEV_ALARM), "【ERROR】运行告警事件:程序文件出错"); break; case 34: DIY_ERRORLOG_CODE(mpid, 2, static_cast(LogCode::LOG_CODE_DEV_ALARM), "【ERROR】运行告警事件:ICD文件解析出错"); break; case 35: DIY_ERRORLOG_CODE(mpid, 2, static_cast(LogCode::LOG_CODE_DEV_ALARM), "【ERROR】运行告警事件:定值出错"); break; case 36: DIY_ERRORLOG_CODE(mpid, 2, static_cast(LogCode::LOG_CODE_DEV_ALARM), "【ERROR】运行告警事件:Pqdif配置模板出错"); break; case 51: DIY_ERRORLOG_CODE(mpid, 2, static_cast(LogCode::LOG_CODE_DEV_ALARM), "【ERROR】电度告警事件:失压事件"); break; case 52: DIY_ERRORLOG_CODE(mpid, 2, static_cast(LogCode::LOG_CODE_DEV_ALARM), "【ERROR】电度告警事件:欠压事件"); break; case 53: DIY_ERRORLOG_CODE(mpid, 2, static_cast(LogCode::LOG_CODE_DEV_ALARM), "【ERROR】电度告警事件:过压事件"); break; case 54: DIY_ERRORLOG_CODE(mpid, 2, static_cast(LogCode::LOG_CODE_DEV_ALARM), "【ERROR】电度告警事件:断相事件"); break; case 55: DIY_ERRORLOG_CODE(mpid, 2, static_cast(LogCode::LOG_CODE_DEV_ALARM), "【ERROR】电度告警事件:电压不平衡事件"); break; case 56: DIY_ERRORLOG_CODE(mpid, 2, static_cast(LogCode::LOG_CODE_DEV_ALARM), "【ERROR】电度告警事件:电流不平衡事件"); break; case 57: DIY_ERRORLOG_CODE(mpid, 2, static_cast(LogCode::LOG_CODE_DEV_ALARM), "【ERROR】电度告警事件:失流事件"); break; case 58: DIY_ERRORLOG_CODE(mpid, 2, static_cast(LogCode::LOG_CODE_DEV_ALARM), "【ERROR】电度告警事件:过流事件"); break; case 59: DIY_ERRORLOG_CODE(mpid, 2, static_cast(LogCode::LOG_CODE_DEV_ALARM), "【ERROR】电度告警事件:断流事件"); break; default: break; } } // 获取测点参数 std::string strScale;//电压等级 int nPTType;//接线方式 float fPT = 1.0f; float fCT = 1.0f; if (ClientManager::instance().get_point_scale_and_pttype( id, // 或使用id event.head.name, // 从报文中解析出的测点序号 strScale, nPTType) && ClientManager::instance().get_pt_ct_ratio(id, event.head.name, fPT, fCT)) { // 使用获取的参数解析事件记录 QVVRRecord record = DynamicLog_GetQVVRRecordFromLogBuffer( strScale, nPTType, fPT, event); // 使用记录数据(示例:打印到控制台) std::cout << "事件类型: " << record.nType << ", 持续时间: " << record.fPersisstime << "s" << ", 特征幅值: " << record.fMagntitude << " pu" << ", 时间戳: " << record.triggerTimeMs << "ms" << std::endl; //lnk20250805 事件上送先记录,录波文件上传结束后再更新文件 append_qvvr_event(id,event.head.name, record.nType,record.fPersisstime,record.fMagntitude,record.triggerTimeMs,record.phase); transfer_json_qvvr_data(id,event.head.name, record.fMagntitude,record.fPersisstime,record.triggerTimeMs,record.nType,record.phase, ""); //事件主动上送处理完成,不需要通知状态机 } else { // 处理获取失败的情况 std::cerr << "Failed to get point parameters for: " << mac << std::endl; } //处理完毕主动上送报文后直接退出,不要干扰装置正常应答 return; } else if (udata[8] == static_cast(MsgResponseType::Response_ActiveSOEInfo)) { //处理主动上送的波形文件信息报文 unsigned char file_type = udata[12];//录波文件类型数 cfg dat hdr 1-3 unsigned char line_id = udata[13];//录波测点 1-6 const uint8_t* data_ptr = parser.RecvData.data() + 2;//数据体去除前两位 size_t data_size = parser.RecvData.size() - 2; // 直接构造字符串(避免额外拷贝) std::string tempfilename( reinterpret_cast(data_ptr), data_size ); // ========== 新增:处理终止符 ========== // 查找字符串中的第一个空字符或其他终止符 size_t terminator_pos = tempfilename.find_first_of("\0\r\n", 0, 3); if (terminator_pos != std::string::npos) { // 如果找到终止符,截断字符串 tempfilename.resize(terminator_pos); std::cout << "Found terminator at position: " << terminator_pos << ", truncated filename to: " << tempfilename << std::endl; } // ========== 新增文件路径处理逻辑 ========== // 1. 分割原始文件名和后缀 size_t dotPos = tempfilename.find_last_of('.'); std::string baseName, originalExt; if (dotPos != std::string::npos) { baseName = tempfilename.substr(0, dotPos); originalExt = tempfilename.substr(dotPos); } else { baseName = tempfilename; originalExt = ""; } // 2. 确定大小写风格 bool isUppercase = false; if (!originalExt.empty()) { isUppercase = true; for (char c : originalExt) { if (std::isalpha(c) && std::islower(c)) { isUppercase = false; break; } } } // 3. 生成需要的后缀列表 std::vector requiredExts; if (file_type == 3) { // 需要三个文件 requiredExts = { ".cfg", ".dat", ".hdr" }; } else { // 默认需要两个文件 requiredExts = { ".cfg", ".dat" }; //requiredExts = { ".dat" }; } // 4. 调整后缀大小写 if (isUppercase) { for (auto& ext : requiredExts) { for (char& c : ext) { if (std::isalpha(c)) c = std::toupper(c); } } } // 5. 构建完整路径列表 std::vector fullFilenames; for (const auto& ext : requiredExts) { fullFilenames.push_back(baseName + ext); } // 6. 打印结果(实际使用中可能需要替换这里的打印逻辑) std::cout << "Generated filenames: "; for (const auto& name : fullFilenames) { std::cout << name << " "; } std::cout << std::endl; //lnk20250805录波文件目录接口 assign_qvvr_file_list(id, line_id, fullFilenames); // ========== 新增:为每个文件生成下载请求 ========== for (const auto& filename : fullFilenames) { // 生成下载请求报文 (帧序号固定为1,代表开始新文件的下载) auto downloadMsg = generate_downloadfile_message(1, filename); // 将下载动作添加到设备队列 ClientManager::instance().add_action_to_device( id, DeviceState::READING_EVENTFILE, downloadMsg ); std::cout << "Added download request for: " << filename << std::endl; } //最后报文收发处理逻辑(如果当前装置空闲则尝试执行后续动作)(如果当前装置存在其他状态则直接退出,不要干扰装置后续执行) DeviceState currentState = DeviceState::IDLE;//获取当前装置的状态 if (!ClientManager::instance().get_device_state(id, currentState)) { std::cerr << "Failed to get device state for: " << id << std::endl; return; } switch (currentState) { case DeviceState::IDLE: //当前装置空闲中,可以执行后续动作 ClientManager::instance().post_message_processing(id); break; default: //非空闲的其他状态直接退出即可,等待后续处理完毕后再尝试获取波形文件 break; } //处理完毕主动上送报文后直接退出,不要干扰装置正常应答 return; } //常规通讯报文 { DeviceState currentState = DeviceState::IDLE;//获取当前装置的状态 if (!ClientManager::instance().get_device_state(id, currentState)) { std::cerr << "Failed to get device state for: " << id << std::endl; return; } // 根据装置状态处理报文 switch (currentState) { case DeviceState::IDLE: // 空闲状态下收到报文,可能是主动上报数据 std::cout << "IDLE state: Received active report from " << mac << std::endl; // 这里可以添加处理主动上报数据的逻辑 break; case DeviceState::READING_STATS: // 读取统计数据状态 if (udata[8] == static_cast(MsgResponseType::Response_Stat)) { // 一发多收,需要在这里等待所有报文收全再组装相应数据 一帧1K 直到所有数据传送完毕 //当前帧未收全,直接退出消息处理,等待后续帧 std::cout << "mac: " << mac << " count" << static_cast(udata[10]) << std::endl; // 解析帧信息 (根据实际协议调整) int current_packet = static_cast(udata[10]); // 当前帧序号 int total_packets = Stat_PacketNum; // 总帧数 std::vector packet_data(udata, udata + length); bool complete = ClientManager::instance().add_stat_packet_to_device( id, packet_data, current_packet, total_packets ); //判断是否收全 if (complete) { // 1. 获取并清空缓存数据包 auto packets = ClientManager::instance().get_and_clear_stat_packets(id); // 2. 按帧序号排序 std::sort(packets.begin(), packets.end(), [](const ClientContext::StatPacket& a, const ClientContext::StatPacket& b) { return a.packet_index < b.packet_index; }); // 3. 解析每帧数据并提取数据体 std::vector full_data; MessageParser parser; for (const auto& packet : packets) { // 解析单帧报文 if (!parser.SetMsg(packet.data.data(), packet.data.size())) { std::cerr << "Failed to parse packet " << packet.packet_index << " for device " << id << std::endl; continue; } // 将数据体添加到完整序列 full_data.insert(full_data.end(), parser.RecvData.begin(), parser.RecvData.end()); } // 4. 组装 tagPqData 对象 tagPqData pq_data; if (!pq_data.SetStructBuf(full_data.data(), full_data.size())) { std::cerr << "Failed to assemble tagPqData for device " << id << std::endl; } else { // 成功组装,可以在这里使用 pq_data 对象 std::cout << "Successfully assembled tagPqData for device: " << id << std::endl; float fPT = 1.0f; float fCT = 1.0f; if (ClientManager::instance().get_pt_ct_ratio(id, pq_data.name, fPT, fCT)) { // 使用获取的变比值进行数据转换 tagPqData_Float float_data; float_data.SetFloatValue(pq_data, fPT, fCT); float_data.name = pq_data.name; float_data.Data_Type = pq_data.Data_Type; // 将浮点数据添加到缓存 // 添加到缓存并检查是否收全 bool complete = ClientManager::instance().add_float_data_to_device( id, pq_data.name, pq_data.Data_Type, float_data); if (complete) { // 如果收全,立即取出处理 std::array all_data = ClientManager::instance().get_and_clear_float_data(id, pq_data.name); if (!all_data.empty()) { //单个测点 4组数据处理逻辑 tagPqData_Float max_data = all_data[0]; tagPqData_Float min_data = all_data[1]; tagPqData_Float avg_data = all_data[2]; tagPqData_Float cp95_data = all_data[3]; std::string strScale;//电压等级 int nPTType = 0;//接线方式 ClientManager::instance().get_point_scale_and_pttype( id, // 或使用id pq_data.name, // 从报文中解析出的测点序号 strScale, nPTType); // 转换为Base64字符串 std::string max_base64Str = max_data.ConvertToBase64(nPTType); std::string min_base64Str = min_data.ConvertToBase64(nPTType); std::string avg_base64Str = avg_data.ConvertToBase64(nPTType); std::string cp95_base64Str = cp95_data.ConvertToBase64(nPTType); //std::cout << "New star base64Str0:" << max_base64Str << std::endl; //std::cout << "New del base64Str1:" << avg_data.ConvertToBase64(1) << std::endl; //lnk20250708使用接口发送 time_t data_time = ConvertToTimestamp(avg_data.time); enqueue_stat_pq(max_base64Str, min_base64Str, avg_base64Str, cp95_base64Str, data_time, mac, avg_data.name); } } } else { // 处理获取变比值失败的情况 std::cerr << "Failed to get PT/CT ratio for device: " << mac << " lineno: " << pq_data.name << std::endl; } } //数据组装完毕,修改为空闲状态等待下一项工作 ClientManager::instance().change_device_state(id, DeviceState::IDLE); } else { //未收全则直接结束处理,等待后续报文应答 return; } } else { // 装置答非所问异常 // 接收统计数据错误,调整为空闲状态,处理下一项工作。 ClientManager::instance().change_device_state(id, DeviceState::IDLE); } break; case DeviceState::READING_STATS_TIME: // 读取统计时间状态 if (udata[8] == static_cast(MsgResponseType::Response_StatTime)) { std::vector points;//装置测点信息 if (ClientManager::instance().get_device_points(mac, points)) { // 成功获取测点信息 // 处理接收装置的时标 tagTime t3; t3.SetStructBuf(parser.RecvData.data(), parser.RecvData.size()); int first = 0;//第一次标记 for (const auto& point : points) { for (ushort i = 0; i < 4; i++)//每个测点需要单独召唤最大,最小,平均,95概率值 { auto sendbuff = generate_statequerystat_message(t3, point.nCpuNo, i);//组装询问统计数据报文 if (first == 0) { //首次尝试组装报文 直接将当前状态调整 并等待最后启动发送 first++; ClientManager::instance().change_device_state(id, DeviceState::READING_STATS, sendbuff); } else { //非首次进入,将动作传入队列等待 ClientManager::instance().add_action_to_device(id, DeviceState::READING_STATS, sendbuff); } } } } else { // 未找到装置下属测点异常 // 接收统计数据时间错误,调整为空闲状态,处理下一项工作。 ClientManager::instance().change_device_state(id, DeviceState::IDLE); } } else { // 装置答非所问异常 // 接收统计数据时间错误,调整为空闲状态,处理下一项工作。 ClientManager::instance().change_device_state(id, DeviceState::IDLE); } break; case DeviceState::READING_REALSTAT: //读取实时数据状态 if (udata[8] == static_cast(MsgResponseType::Response_New_3S)) { unsigned char packet_type = udata[13]; //取监测点号 unsigned char cid = udata[12]; // 将数据添加到缓存 const uint8_t* data_ptr = parser.RecvData.data() + 4; size_t data_size = parser.RecvData.size() - 4; ClientManager::instance().add_realtime_packet_to_device( id, packet_type, data_ptr, data_size ); // 如果不是最后一个包,请求下一个包 if (packet_type != 0x06) { unsigned char next_packet_type = packet_type + 1; auto sendbuff = generate_realstat_message( static_cast(udata[12]), next_packet_type, static_cast(0x01) ); ClientManager::instance().change_device_state( id, DeviceState::READING_REALSTAT, sendbuff ); } else { // 获取并清空缓存 auto packets = ClientManager::instance().get_and_clear_realtime_packets(id); // 按包类型排序(01-06) std::sort(packets.begin(), packets.end(), [](const ClientContext::RealtimePacket& a, const ClientContext::RealtimePacket& b) { return a.packet_type < b.packet_type; }); RealtagPqDate_float realdata; // 按顺序解析每个包 for (const auto& packet : packets) { switch (packet.packet_type) { case 0x01: realdata.ParsePacket1(packet.data.data(), packet.data.size()); break; case 0x02: realdata.ParsePacket2(packet.data.data(), packet.data.size()); break; case 0x03: realdata.ParsePacket3(packet.data.data(), packet.data.size()); break; case 0x04: realdata.ParsePacket4(packet.data.data(), packet.data.size()); break; case 0x05: realdata.ParsePacket5(packet.data.data(), packet.data.size()); break; case 0x06: realdata.ParsePacket6(packet.data.data(), packet.data.size()); break; } } std::string strScale;//电压等级 int nPTType = 0;//接线方式 ClientManager::instance().get_point_scale_and_pttype( id, // 或使用id static_cast(udata[12]), // 从报文中解析出的测点序号 strScale, nPTType); // 转换为Base64字符串并发送lnk20250924 enqueue_realtime_pq(realdata, nPTType, cid, mac, id); // 处理完成后重置状态 ClientManager::instance().change_device_state(id, DeviceState::IDLE); } } else { // 装置答非所问异常 on_device_response_minimal(static_cast(ResponseCode::INTERNAL_ERROR), id,0, static_cast(DeviceState::READING_REALSTAT)); // 接收实时数据错误,调整为空闲状态,处理下一项工作。 ClientManager::instance().change_device_state(id, DeviceState::IDLE); } break; case DeviceState::READING_EVENTFILE: // 暂态波形文件下载 if (udata[8] == static_cast(MsgResponseType::Response_File_Download)) { // 提取当前帧序号(12-15字节,大端序) int current_frame = (static_cast(udata[12]) << 24) | (static_cast(udata[13]) << 16) | (static_cast(udata[14]) << 8) | static_cast(udata[15]); // 提取总帧数(16-19字节,大端序) int total_frames = (static_cast(udata[16]) << 24) | (static_cast(udata[17]) << 16) | (static_cast(udata[18]) << 8) | static_cast(udata[19]); //std::cout << "eventfile frames: " << current_frame << "/" << total_frames << std::endl; // 将数据添加到缓存 去除数据体前14位 (逻辑稍后编写) const uint8_t* data_ptr = parser.RecvData.data() + 14; size_t data_size = parser.RecvData.size() - 14; // 如果是第一帧,记录文件名 if (current_frame == 1) { ClientManager::DownloadInfo info; if (ClientManager::instance().parse_download_packet(id, info)) { ClientManager::instance().update_current_filename(id, info.filename); } } // 获取文件名 std::string filename = ClientManager::instance().get_current_filename(id); // 添加到缓存 ClientManager::instance().add_file_packet_to_device(id, current_frame, data_ptr, data_size); //std::cout << "fileinfo: " << info.filename << "/" << info.current_frame << std::endl; //判断是否收全,未收全则继续发送报文,收全则取出所有缓存组装文件并保存至本地,推送消息 if (current_frame < total_frames) { // 未收全,更新帧序号并保持状态,等待后续自动发送已修改的新报文 int nextframe = current_frame + 1; auto downloadMsg = generate_downloadfile_message(nextframe, filename); ClientManager::instance().change_device_state(id, DeviceState::READING_EVENTFILE, downloadMsg); } else { // 已收全,在此处处理文件 std::cout << "mac: " << mac << " fileinfo: " << filename < file_data; for (const auto& packet : packets) { file_data.insert(file_data.end(), packet.begin(), packet.end()); } // 保存文件 std::string wavefile = "wave"; // 使用MAC地址作为目录名 // 创建目录(如果不存在) if (mkdir(wavefile.c_str(), 0777) != 0 && errno != EEXIST) { std::cerr << "Failed to create directory: " << wavefile << std::endl; } // 保存文件 std::string mac_dir = wavefile + "/" + mac; // 使用MAC地址作为目录名 // 创建目录(如果不存在) if (mkdir(mac_dir.c_str(), 0777) != 0 && errno != EEXIST) { std::cerr << "Failed to create directory: " << mac_dir << std::endl; } std::string path = extract_filename(filename); std::string file_path = mac_dir + "/" + path; std::ofstream out_file(file_path, std::ios::binary); if (out_file) { out_file.write(reinterpret_cast(file_data.data()), file_data.size()); std::cout << "File saved: " << file_path << std::endl; //lnk20250805文件保存成功调用录波文件上送接口 update_qvvr_file_download(file_path, id); } else { std::cerr << "Failed to save file: " << file_path << ", Error: " << strerror(errno) << std::endl; // 文件保存失败,通知云端 /*on_device_response_minimal(static_cast(ResponseCode::BAD_REQUEST), id, 0, static_cast(DeviceState::READING_EVENTFILE));*/ } //当前文件下载完毕,调整为空闲处理下一项工作(如果这里后续有新文件等待下载,一般已经存入等待队列等候处理了,调成空闲状态后直接就会开始新文件的下载工作) ClientManager::instance().change_device_state(id, DeviceState::IDLE); } } else { // 装置答非所问异常 //on_device_response_minimal(static_cast(ResponseCode::INTERNAL_ERROR), id, 0, static_cast(DeviceState::READING_EVENTFILE)); // 接收波形文件数据错误,调整为空闲状态,处理下一项工作。 ClientManager::instance().change_device_state(id, DeviceState::IDLE); } break; case DeviceState::READING_FILEMENU: //读取文件目录 if (udata[8] == static_cast(MsgResponseType::Response_FileDir)) { // 计算结构体大小 const size_t struct_size = sizeof(tag_dir_info); const uint8_t* data_ptr = parser.RecvData.data(); size_t data_size = parser.RecvData.size(); std::vector FileList; // 遍历接收到的数据 for (size_t i = 0; i < data_size; i += struct_size) { if (i + struct_size > data_size) break; tag_dir_info dir_info; memcpy(&dir_info, data_ptr + i, struct_size); // 字节序转换 (大端 -> 小端) dir_info.flag = ntohl(dir_info.flag); dir_info.size = ntohl(dir_info.size); std::string gbk_name(dir_info.name, strnlen(dir_info.name, sizeof(dir_info.name))); // 打印文件名 std::cout << "file name:" << gbk_name << std::endl; // 添加到文件列表 FileList.push_back(dir_info); } // 这里可以添加发送文件列表的逻辑 //send_file_list(id,FileList);//lnk20250813 filemenu_cache_put(id,FileList); on_device_response_minimal(static_cast(ResponseCode::OK), id, 0, static_cast(DeviceState::READING_FILEMENU)); // 处理完成后重置状态 ClientManager::instance().change_device_state(id, DeviceState::IDLE); } else { std::cout << "reason code: " << static_cast(udata[8]) << "-" << static_cast(udata[9]) << "-" << static_cast(udata[10]) << "-" << static_cast(udata[11]) << std::endl; // 装置答非所问异常 on_device_response_minimal(static_cast(ResponseCode::INTERNAL_ERROR), id, 0, static_cast(DeviceState::READING_FILEMENU)); // 接收目录数据错误,调整为空闲状态,处理下一项工作。 ClientManager::instance().change_device_state(id, DeviceState::IDLE); } break; case DeviceState::READING_FILEDATA: //下载文件数据 和暂态文件下载共用同一功能码 if (udata[8] == static_cast(MsgResponseType::Response_File_Download)) { // 提取当前帧序号(12-15字节,大端序) int current_frame = (static_cast(udata[12]) << 24) | (static_cast(udata[13]) << 16) | (static_cast(udata[14]) << 8) | static_cast(udata[15]); // 提取总帧数(16-19字节,大端序) int total_frames = (static_cast(udata[16]) << 24) | (static_cast(udata[17]) << 16) | (static_cast(udata[18]) << 8) | static_cast(udata[19]); //提取数据 const uint8_t* data_ptr = parser.RecvData.data() + 14; size_t data_size = parser.RecvData.size() - 14; // 如果是第一帧,记录文件名 if (current_frame == 1) { ClientManager::DownloadInfo info; if (ClientManager::instance().parse_download_packet(id, info)) { ClientManager::instance().update_current_filename(id, info.filename); } } // 获取文件名 std::string filename = ClientManager::instance().get_current_filename(id); // 添加到缓存 ClientManager::instance().add_file_packet_to_device(id, current_frame, data_ptr, data_size); //判断是否收全,未收全则继续发送报文,收全则取出所有缓存组装文件并保存至本地,推送消息 if (current_frame < total_frames) { // 未收全,更新帧序号并保持状态,等待后续自动发送已修改的新报文 int nextframe = current_frame + 1; auto downloadMsg = generate_downloadfile_message(nextframe, filename); ClientManager::instance().change_device_state(id, DeviceState::READING_FILEDATA, downloadMsg); } else { // 已收全,在此处处理文件 std::cout << "mac: " << mac << " fileinfo: " << filename << std::endl; // 获取缓存中的所有分片 auto packets = ClientManager::instance().get_and_clear_file_packets(id); // 合并文件内容 std::vector file_data; for (const auto& packet : packets) { file_data.insert(file_data.end(), packet.begin(), packet.end()); } // 保存文件 std::string wavefile = "download"; // 使用MAC地址作为目录名 // 创建目录(如果不存在) if (mkdir(wavefile.c_str(), 0777) != 0 && errno != EEXIST) { std::cerr << "Failed to create directory: " << wavefile << std::endl; } // 保存文件 std::string mac_dir = wavefile + "/" + mac; // 使用MAC地址作为目录名 // 创建目录(如果不存在) if (mkdir(mac_dir.c_str(), 0777) != 0 && errno != EEXIST) { std::cerr << "Failed to create directory: " << mac_dir << std::endl; } std::string path = extract_filename(filename); std::string file_path = mac_dir + "/" + path; std::ofstream out_file(file_path, std::ios::binary); if (out_file) { out_file.write(reinterpret_cast(file_data.data()), file_data.size()); std::cout << "File saved: " << file_path << std::endl; //调试用 // 若是 .cfg,先查看并打印内容(限长) { auto dot = file_path.find_last_of('.'); std::string ext = (dot == std::string::npos) ? "" : file_path.substr(dot); // 转小写比较 for (auto& c : ext) c = static_cast(std::tolower(static_cast(c))); if (ext == ".cfg") { std::ifstream fin(file_path, std::ios::binary); if (!fin) { std::cerr << "[CFG] open failed: " << file_path << " (" << std::strerror(errno) << ")\n"; } else { // 读取前 8KB 作为预览,避免日志过大 constexpr size_t kMaxPreview = 8 * 1024; std::string buf; buf.resize(kMaxPreview); fin.read(&buf[0], static_cast(kMaxPreview)); std::streamsize got = fin.gcount(); buf.resize(static_cast(got)); std::cout << "================ [CFG PREVIEW BEGIN] ================\n"; std::cout << "path=" << file_path << ", size=" << file_data.size() << " bytes, preview=" << got << " bytes\n"; // 直接打印文本预览;如果包含不可见字符,会按原样输出 std::cout.write(buf.data(), static_cast(buf.size())); if (static_cast(got) == kMaxPreview && fin.peek() != EOF) { std::cout << "\n...[truncated]\n"; } std::cout << "\n================ [CFG PREVIEW END] ==================\n"; } } } //使用接口上送文件lnk20250826 std::string filename; //SendFileWebAuto(id, file_path, file_path, filename);//如果是补招文件的下载,下载后也是直接上传,这样单纯补招波形也可以保证传文件 std::cout << "File download success wait for upload: " << filename << std::endl; //通知文件上传 on_device_response_minimal(static_cast(ResponseCode::OK), id, 0, static_cast(DeviceState::READING_FILEDATA)); } else { on_device_response_minimal(static_cast(ResponseCode::INTERNAL_ERROR), id, 0, static_cast(DeviceState::READING_FILEDATA)); std::cerr << "Failed to save file: " << file_path << ", Error: " << strerror(errno) << std::endl; } //当前文件下载完毕,调整为空闲处理下一项工作(如果这里后续有新文件等待下载,一般已经存入等待队列等候处理了,调成空闲状态后直接就会开始新文件的下载工作) ClientManager::instance().change_device_state(id, DeviceState::IDLE); } } else { // 装置答非所问异常 on_device_response_minimal(static_cast(ResponseCode::INTERNAL_ERROR), id, 0, static_cast(DeviceState::READING_FILEDATA)); // 下载文件数据错误,调整为空闲状态,处理下一项工作。 ClientManager::instance().change_device_state(id, DeviceState::IDLE); } break; case DeviceState::READING_FIXEDVALUE: //读取指定测点定值数据 if (udata[8] == static_cast(MsgResponseType::Response_FixValue)) { // 确保数据长度足够包含测点序号 if (parser.RecvData.size() < 1) { std::cout << "Invalid fix value data length" << std::endl; on_device_response_minimal(static_cast(ResponseCode::INTERNAL_ERROR), id, 0, static_cast(DeviceState::READING_FIXEDVALUE)); ClientManager::instance().change_device_state(id, DeviceState::IDLE); break; } // 提取测点序号 (第一个字节) uint8_t monitor_index = parser.RecvData[0]; std::cout << "Monitor Index: " << static_cast(monitor_index) << std::endl; // 计算有效数据长度 (排除测点序号) size_t bufflen = parser.RecvData.size() - 1; const size_t structlen = 4; // 每个浮点数占4字节 // 检查数据长度是否合法 if (bufflen % structlen != 0) { std::cout << "Invalid fix value data length: " << bufflen << " (not multiple of 4)" << std::endl; on_device_response_minimal(static_cast(ResponseCode::INTERNAL_ERROR), id, 0, static_cast(DeviceState::READING_FIXEDVALUE)); ClientManager::instance().change_device_state(id, DeviceState::IDLE); break; } // 存储浮点值的容器 std::vector fList; fList.reserve(bufflen / structlen); // 预分配空间 // 解析浮点数据 (从第二个字节开始) for (size_t i = 1; i < parser.RecvData.size(); i += structlen) { // 复制4字节数据 uint8_t bytes[4] = { parser.RecvData[i], parser.RecvData[i + 1], parser.RecvData[i + 2], parser.RecvData[i + 3] }; // 翻转字节序 (大端转小端) std::swap(bytes[0], bytes[3]); std::swap(bytes[1], bytes[2]); // 转换为float float value; memcpy(&value, bytes, sizeof(float)); fList.push_back(value); } // 打印解析结果 std::cout << "Parsed " << fList.size() << " fix values:" << std::endl; for (size_t j = 0; j < fList.size(); ++j) { std::cout << " Value[" << j << "]: " << fList[j] << std::endl; } //存储定值lnk20250827 save_set_value(id, monitor_index, fList); //测试定值修改功能 //ClientManager::instance().set_fixedvalue_action_to_device(id, monitor_index, fList); //定值读取完毕,调整为空闲,处理后续工作。 ClientManager::instance().change_device_state(id, DeviceState::IDLE); } else { // 装置答非所问异常 on_device_response_minimal(static_cast(ResponseCode::INTERNAL_ERROR), id, 0, static_cast(DeviceState::READING_FIXEDVALUE)); // 读取定值错误,调整为空闲状态,处理下一项工作。 ClientManager::instance().change_device_state(id, DeviceState::IDLE); } break; case DeviceState::READING_FIXEDVALUEDES: //读取指定测点定值描述 if (udata[8] == static_cast(MsgResponseType::Response_FixDes)) { // 计算结构体大小 const size_t structlen = sizeof(DZ_TAB_STRUCT); const size_t bufflen = parser.RecvData.size(); // 检查数据长度是否有效 if (bufflen == 0 || bufflen % structlen != 0) { std::cerr << "Invalid fixdes data length: " << bufflen << " (expected multiple of " << structlen << ")" << std::endl; on_device_response_minimal(static_cast(ResponseCode::INTERNAL_ERROR), id, 0, static_cast(DeviceState::READING_FIXEDVALUEDES)); ClientManager::instance().change_device_state(id, DeviceState::IDLE); break; } // 存储所有解析出的定值描述 std::vector dz_list; dz_list.reserve(bufflen / structlen); // 遍历所有定值描述结构体 for (size_t i = 0, j = 1; i < bufflen; i += structlen, j++) { // 复制数据到临时缓冲区 std::vector buff(structlen); memcpy(buff.data(), parser.RecvData.data() + i, structlen); // 执行字节序转换(与C#相同) ReversalBuff(buff.data(), 0, 2); // LN_Num ReversalBuff(buff.data(), 2, 2); // DZ_Num ReversalBuff(buff.data(), 70, 2); // DZ_Type ReversalBuff(buff.data(), 72, 4); // DZ_Min ReversalBuff(buff.data(), 76, 4); // DZ_Max ReversalBuff(buff.data(), 80, 4); // DZ_Default // 解析为结构体 DZ_TAB_STRUCT dz_info; memcpy(&dz_info, buff.data(), structlen); // 正确处理字符串 - 查找第一个'\0'作为结束符 auto find_string_end = [](const char* arr, size_t max_len) -> size_t { for (size_t i = 0; i < max_len; i++) { if (arr[i] == '\0') return i; } return max_len; }; // 提取原始GBK字符串 size_t name_len = find_string_end(dz_info.DZ_Name, sizeof(dz_info.DZ_Name)); size_t unit_len = find_string_end(dz_info.DZ_UNIT, sizeof(dz_info.DZ_UNIT)); // 转换为可打印字符串(可选)(GBK编码) std::string dz_name(dz_info.DZ_Name, name_len); std::string dz_unit(dz_info.DZ_UNIT, unit_len); // 保存到上下文 dz_list.push_back(dz_info); // 调试输出(可选) std::cout << "Parsed DZ entry #" << j << ": " << "LN=" << dz_info.LN_Num << ", ID=" << dz_info.DZ_Num << ", Name=" << dz_name << ", Type=" << dz_info.DZ_Type << ", Min=" << dz_info.DZ_Min << ", Max=" << dz_info.DZ_Max << ", Default=" << dz_info.DZ_Default << ", Unit=" << dz_unit << std::endl; } //lnk20250828 // 提取测点序号 (第一个字节) uint8_t monitor_index = parser.RecvData[0]; std::cout << "Monitor Index: " << static_cast(monitor_index) << std::endl; send_set_value_reply(id, monitor_index, dz_list); on_device_response_minimal(static_cast(ResponseCode::OK), id, 0, static_cast(DeviceState::READING_FIXEDVALUE)); //定值描述读取完毕,调整为空闲,处理后续工作。 ClientManager::instance().change_device_state(id, DeviceState::IDLE); } else { // 装置答非所问异常 on_device_response_minimal(static_cast(ResponseCode::INTERNAL_ERROR),id,0,static_cast(DeviceState::READING_FIXEDVALUEDES)); // 读取定值描述,调整为空闲状态,处理下一项工作。 ClientManager::instance().change_device_state(id, DeviceState::IDLE); } break; case DeviceState::SET_FIXEDVALUE: //设置装置定值 if (udata[8] == static_cast(MsgResponseType::Response_NewACK)) { std::cout << "set success" << mac << std::endl; //响应lnk20250828 on_device_response_minimal(static_cast(ResponseCode::OK),id,0,static_cast(DeviceState::SET_FIXEDVALUE)); //定值设置成功,调整为空闲,处理后续工作。 ClientManager::instance().change_device_state(id, DeviceState::IDLE); } else if (udata[8] == static_cast(MsgResponseType::Response_NewNACK)) { std::cout << "set error" << mac << std::endl; // 装置否定应答,定值设置失败 //响应lnk20250828 on_device_response_minimal(static_cast(ResponseCode::BAD_REQUEST),id,0,static_cast(DeviceState::SET_FIXEDVALUE)); // 设置装置定值失败,调整为空闲状态,处理下一项工作。 ClientManager::instance().change_device_state(id, DeviceState::IDLE); } else { // 装置答非所问异常 // 设置装置定值失败,调整为空闲状态,处理下一项工作。 //响应lnk20250828 on_device_response_minimal(static_cast(ResponseCode::INTERNAL_ERROR),id,0,static_cast(DeviceState::SET_FIXEDVALUE)); ClientManager::instance().change_device_state(id, DeviceState::IDLE); } break; case DeviceState::READING_INTERFIXEDVALUE: //读取内部定值 if (udata[8] == static_cast(MsgResponseType::Response_Read_InterFix)) { // 获取数据长度 size_t bufflen = parser.RecvData.size(); const size_t structlen = 2; // 每个ushort占2字节 // 存储解析结果的容器 std::vector fList; fList.reserve(bufflen / structlen); // 预分配空间 // 解析每个ushort数据 for (size_t i = 0; i < bufflen; i += structlen) { // 复制2字节数据 uint8_t bytes[2] = { parser.RecvData[i], parser.RecvData[i + 1] }; // 翻转字节序 (大端转小端) std::swap(bytes[0], bytes[1]); // 转换为ushort - 使用memcpy确保正确处理字节序 ushort value; memcpy(&value, bytes, sizeof(ushort)); fList.push_back(value); } // 打印解析结果(调试用) std::cout << "Parsed " << fList.size() << " internal fixed values:" << std::endl; for (size_t j = 0; j < fList.size(); ++j) { std::cout << " Value[" << j << "]: " << fList[j] << std::endl; } //存储定值lnk20250827 save_internal_value(id, fList); //内部定值修改测试 //ClientManager::instance().set_interfixedvalue_action_to_device(id, fList); //内部定值获取完毕,调整为空闲,处理后续工作。 ClientManager::instance().change_device_state(id, DeviceState::IDLE); } else { // 装置答非所问异常 on_device_response_minimal(static_cast(ResponseCode::INTERNAL_ERROR), id, 0, static_cast(DeviceState::READING_INTERFIXEDVALUE)); // 读取装置内部定值失败,调整为空闲状态,处理下一项工作。 ClientManager::instance().change_device_state(id, DeviceState::IDLE); } break; case DeviceState::READING_INTERFIXEDVALUEDES: //读取内部定值描述 if (udata[8] == static_cast(MsgResponseType::Response_Read_InterFixDes)) { // 获取接收数据 std::vector& recvData = parser.RecvData; size_t bufflen = recvData.size(); const size_t structlen = sizeof(NameFixValue); // 存储解析结果的向量 std::vector fixValueList; // 检查数据长度是否合法 if (bufflen == 0 || bufflen % structlen != 0) { std::cerr << "Invalid internal fixdes data length: " << bufflen << " (expected multiple of " << structlen << ")" << std::endl; ClientManager::instance().change_device_state(id, DeviceState::IDLE); on_device_response_minimal(static_cast(ResponseCode::INTERNAL_ERROR), id, 0, static_cast(DeviceState::READING_INTERFIXEDVALUEDES)); break; } else { // 计算结构体数量 size_t structCount = bufflen / structlen; fixValueList.reserve(structCount); // 遍历所有结构体 for (size_t i = 0, k = 1; i < bufflen; i += structlen, k++) { // 复制当前结构体数据到缓冲区 std::vector buff(structlen); memcpy(buff.data(), recvData.data() + i, structlen); // 翻转数据类型DataType (偏移22, 2字节) ReversalBuff(buff.data(), 22, 2); // 翻转最小值MinValue (偏移24, 2字节) ReversalBuff(buff.data(), 24, 2); // 翻转最大值MaxValue (偏移26, 2字节) ReversalBuff(buff.data(), 26, 2); // 翻转缺省值DefaultValue (偏移28, 2字节) ReversalBuff(buff.data(), 28, 2); // 解析为结构体 NameFixValue dz_info; memcpy(&dz_info, buff.data(), structlen); // 添加到结果列表 fixValueList.push_back(dz_info); // 调试输出 std::string fixName(dz_info.sFixValueName, strnlen(dz_info.sFixValueName, sizeof(dz_info.sFixValueName))); std::string dimension(dz_info.sDimension, strnlen(dz_info.sDimension, sizeof(dz_info.sDimension))); std::cout << "Parsed internal fix value #" << k << ": " << "Name=" << fixName << ", " << "Type=" << dz_info.DataType << ", " << "Min=" << dz_info.MinValue << ", " << "Max=" << dz_info.MaxValue << ", " << "Default=" << dz_info.DefaultValue << ", " << "Unit=" << dimension << std::endl; } } //lnk20250905 save_internal_info(id, fixValueList); //内部定值描述获取完毕,调整为空闲状态,处理下一项工作。 ClientManager::instance().change_device_state(id, DeviceState::IDLE); } else { // 装置答非所问异常 on_device_response_minimal(static_cast(ResponseCode::INTERNAL_ERROR), id, 0, static_cast(DeviceState::READING_INTERFIXEDVALUEDES)); // 读取装置内部定值描述失败,调整为空闲状态,处理下一项工作。 ClientManager::instance().change_device_state(id, DeviceState::IDLE); } break; case DeviceState::READING_CONTROLWORD: //读取控制字描述 if (udata[8] == static_cast(MsgResponseType::Response_Read_InterFixDes)) { // 计算结构体大小 const size_t structlen = sizeof(DZ_kzz_bit); const size_t bufflen = parser.RecvData.size(); // 检查数据长度是否有效 if (bufflen == 0 || bufflen % structlen != 0) { std::cerr << "Invalid control word data length: " << bufflen << " (expected multiple of " << structlen << ")" << std::endl; on_device_response_minimal(static_cast(ResponseCode::INTERNAL_ERROR), id, 0, static_cast(DeviceState::READING_CONTROLWORD)); ClientManager::instance().change_device_state(id, DeviceState::IDLE); break; } // 存储解析结果 std::vector control_words; control_words.reserve(bufflen / structlen); // 遍历所有控制字描述结构体 for (size_t i = 0; i < bufflen; i += structlen) { // 复制数据到临时缓冲区 std::vector buff(structlen); memcpy(buff.data(), parser.RecvData.data() + i, structlen); // 解析为结构体 DZ_kzz_bit dz_info; memcpy(&dz_info, buff.data(), structlen); // 正确处理字符串 - 查找第一个'\0'作为结束符 auto find_string_end = [](const char* arr, size_t max_len) -> size_t { for (size_t i = 0; i < max_len; i++) { if (arr[i] == '\0') return i; } return max_len; }; // 提取原始GBK字符串 size_t name_len = find_string_end(dz_info.kzz_bit, sizeof(dz_info.kzz_bit)); // 直接存储原始GBK数据(不转换UTF-8) control_words.push_back(dz_info); // 调试输出(可选) std::string gbk_name(dz_info.kzz_bit,name_len); std::cout << "Control word: " << gbk_name << ", enable: " << static_cast(dz_info.bit_enable) << std::endl; } send_internal_value_reply(id, control_words); on_device_response_minimal(static_cast(ResponseCode::OK), id, 0, static_cast(DeviceState::READING_INTERFIXEDVALUE)); // 控制字描述读取完毕,调整为空闲,处理后续工作 ClientManager::instance().change_device_state(id, DeviceState::IDLE); } else { // 装置答非所问异常 on_device_response_minimal(static_cast(ResponseCode::INTERNAL_ERROR), id, 0, static_cast(DeviceState::READING_CONTROLWORD)); // 读取装置控制字描述失败,调整为空闲状态,处理下一项工作。 ClientManager::instance().change_device_state(id, DeviceState::IDLE); } break; case DeviceState::SET_INTERFIXEDVALUE: //设置内部定值 if (udata[8] == static_cast(MsgResponseType::Response_NewACK)) { std::cout << "set success" << mac << std::endl; //内部定值设置成功,调整为空闲,处理后续工作。 on_device_response_minimal(static_cast(ResponseCode::OK), id, 0, static_cast(DeviceState::SET_INTERFIXEDVALUE)); ClientManager::instance().change_device_state(id, DeviceState::IDLE); } else if (udata[8] == static_cast(MsgResponseType::Response_NewNACK)) { std::cout << "set error" << mac << std::endl; std::cout << "reason code: " << static_cast(udata[8]) << "-" << static_cast(udata[9]) << "-" << static_cast(udata[10]) << "-" << static_cast(udata[11]) << std::endl; // 装置否定应答,内部定值设置失败 on_device_response_minimal(static_cast(ResponseCode::BAD_REQUEST), id, 0, static_cast(DeviceState::SET_INTERFIXEDVALUE)); // 设置装置内部定值失败,调整为空闲状态,处理下一项工作。 ClientManager::instance().change_device_state(id, DeviceState::IDLE); } else { // 装置答非所问异常 on_device_response_minimal(static_cast(ResponseCode::INTERNAL_ERROR), id, 0, static_cast(DeviceState::SET_INTERFIXEDVALUE)); // 设置装置内部定值失败,调整为空闲状态,处理下一项工作。 ClientManager::instance().change_device_state(id, DeviceState::IDLE); } break; case DeviceState::READING_RUNNINGINFORMATION_1: //读取装置运行信息(主动触发) if (udata[8] == static_cast(MsgResponseType::Response_Read_RunningInformation)) { // 获取解析后的数据体 std::vector& recvData = parser.RecvData; // 检查数据长度是否足够 if (recvData.size() < 2) { std::cerr << "Invalid running information data: too short (" << recvData.size() << " bytes)" << std::endl; ClientManager::instance().change_device_state(id, DeviceState::IDLE); break; } // 提取有效载荷长度 size_t payloadLength = recvData.size() - 2; // 复制有效载荷数据 std::vector payloadBytes(payloadLength); if (recvData.size() >= 2 + payloadLength) { std::copy(recvData.begin() + 2, recvData.begin() + 2 + payloadLength, payloadBytes.begin()); } else { std::cerr << "Invalid payload length: " << payloadLength << ", available: " << (recvData.size() - 2) << std::endl; ClientManager::instance().change_device_state(id, DeviceState::IDLE); break; } // 转换为UTF-8字符串 std::string payload(payloadBytes.begin(), payloadBytes.end()); // 定义类似New_MachMessage的结构体 struct RunningInformation { std::string Time; std::string CpuLoad; std::string FreeMemory; std::string TotalMemory; std::string FreeStorage; std::string TotalStorage; std::string HardTimeSync; std::string SntpTimeSync; std::string CloudTimeSync; std::string SignalStrength; } result; // 辅助函数:去除字符串两端的引号 auto trimQuotes = [](const std::string& str) -> std::string { if (str.size() >= 2 && str.front() == '"' && str.back() == '"') { return str.substr(1, str.size() - 2); } return str; }; // 辅助函数:处理CPU负载值 auto processCpuLoad = [](const std::string& cpuValue) -> std::string { if (cpuValue.empty()) return cpuValue; // 处理多核格式(如"39_38") if (cpuValue.find('_') != std::string::npos) { std::vector cores; size_t start = 0, end; while ((end = cpuValue.find('_', start)) != std::string::npos) { cores.push_back(cpuValue.substr(start, end - start)); start = end + 1; } cores.push_back(cpuValue.substr(start)); // 添加最后一部分 for (auto& core : cores) { // 手动转换整数(替代std::stoi) const char* str = core.c_str(); char* endptr = nullptr; long value = strtol(str, &endptr, 10); // 检查转换是否有效 if (endptr != str && *endptr == '\0') { // 校正超范围值 if (value > 100) value /= 100; core = std::to_string(value); } // 转换失败保持原值 } std::string result; for (size_t i = 0; i < cores.size(); ++i) { if (i > 0) result += '_'; result += cores[i]; } return result; } // 处理单核格式 else { const char* str = cpuValue.c_str(); char* endptr = nullptr; long value = strtol(str, &endptr, 10); // 检查转换是否有效 if (endptr != str && *endptr == '\0') { if (value > 100) value /= 100; return std::to_string(value); } return cpuValue; } }; // 分割字段并处理 std::vector fields; size_t start = 0; while (start < payload.length()) { size_t end = payload.find(',', start); if (end == std::string::npos) { fields.push_back(payload.substr(start)); break; } fields.push_back(payload.substr(start, end - start)); start = end + 1; } for (const auto& field : fields) { // 跳过空字段 if (field.empty()) continue; // 查找冒号位置 size_t colonPos = field.find(':'); if (colonPos == std::string::npos || colonPos == 0 || colonPos == field.length() - 1) { continue; } // 分割键值对 std::string key = field.substr(0, colonPos); std::string value = field.substr(colonPos + 1); // 去除键的空白 size_t keyStart = key.find_first_not_of(" \t"); size_t keyEnd = key.find_last_not_of(" \t"); if (keyStart != std::string::npos && keyEnd != std::string::npos) { key = key.substr(keyStart, keyEnd - keyStart + 1); } // 去除值的空白 size_t valStart = value.find_first_not_of(" \t"); size_t valEnd = value.find_last_not_of(" \t"); if (valStart != std::string::npos && valEnd != std::string::npos) { value = value.substr(valStart, valEnd - valStart + 1); } // 去除值两端的引号 if (value.size() >= 2 && value.front() == '"' && value.back() == '"') { value = value.substr(1, value.size() - 2); } // 尝试将键转换为整数 const char* keyStr = key.c_str(); char* endPtr = nullptr; long fieldId = strtol(keyStr, &endPtr, 10); // 检查转换是否有效 if (endPtr != keyStr && *endPtr == '\0' && fieldId >= 1 && fieldId <= 10) { switch (fieldId) { case 1: result.Time = value; break; case 2: result.CpuLoad = value; break; case 3: result.FreeMemory = value; break; case 4: result.TotalMemory = value; break; case 5: result.FreeStorage = value; break; case 6: result.TotalStorage = value; break; case 7: result.HardTimeSync = value; break; case 8: result.SntpTimeSync = value; break; case 9: result.CloudTimeSync = value; break; case 10: result.SignalStrength = value; break; default: break; } } } // 特殊处理CPU负载 result.CpuLoad = processCpuLoad(result.CpuLoad); // 打印解析结果(实际应用中可替换为其他处理逻辑) std::cout << "Device Running Information (" << mac << "):\n" << " Time: " << result.Time << "\n" << " CPU Load: " << result.CpuLoad << "\n" << " Memory: " << result.FreeMemory << "/" << result.TotalMemory << " MB\n" << " Storage: " << result.FreeStorage << "/" << result.TotalStorage << " GB\n" << " Time Sync: Hard=" << result.HardTimeSync << ", SNTP=" << result.SntpTimeSync << ", Cloud=" << result.CloudTimeSync << "\n" << " Signal: " << result.SignalStrength << std::endl; //读取装置运行信息(主动触发)成功,调整为空闲,处理后续工作。 ClientManager::instance().change_device_state(id, DeviceState::IDLE); } else { // 装置答非所问异常 // 读取装置运行信息(主动触发)失败,调整为空闲状态,处理下一项工作。 ClientManager::instance().change_device_state(id, DeviceState::IDLE); } break; case DeviceState::READING_RUNNINGINFORMATION_2: //读取装置运行信息(定时触发) 接收与解析和主动触发一致,仅修改数据发送部分 if (udata[8] == static_cast(MsgResponseType::Response_Read_RunningInformation)) { // 获取解析后的数据体 std::vector& recvData = parser.RecvData; // 检查数据长度是否足够 if (recvData.size() < 2) { std::cerr << "Invalid running information data: too short (" << recvData.size() << " bytes)" << std::endl; ClientManager::instance().change_device_state(id, DeviceState::IDLE); break; } // 提取有效载荷长度 size_t payloadLength = recvData.size() - 2; // 复制有效载荷数据 std::vector payloadBytes(payloadLength); if (recvData.size() >= 2 + payloadLength) { std::copy(recvData.begin() + 2, recvData.begin() + 2 + payloadLength, payloadBytes.begin()); } else { std::cerr << "Invalid payload length: " << payloadLength << ", available: " << (recvData.size() - 2) << std::endl; ClientManager::instance().change_device_state(id, DeviceState::IDLE); break; } // 转换为UTF-8字符串 std::string payload(payloadBytes.begin(), payloadBytes.end()); // 定义类似New_MachMessage的结构体 struct RunningInformation { std::string Time; std::string CpuLoad; std::string FreeMemory; std::string TotalMemory; std::string FreeStorage; std::string TotalStorage; std::string HardTimeSync; std::string SntpTimeSync; std::string CloudTimeSync; std::string SignalStrength; } result; // 辅助函数:去除字符串两端的引号 auto trimQuotes = [](const std::string& str) -> std::string { if (str.size() >= 2 && str.front() == '"' && str.back() == '"') { return str.substr(1, str.size() - 2); } return str; }; // 辅助函数:处理CPU负载值 auto processCpuLoad = [](const std::string& cpuValue) -> std::string { if (cpuValue.empty()) return cpuValue; // 处理多核格式(如"39_38") if (cpuValue.find('_') != std::string::npos) { std::vector cores; size_t start = 0, end; while ((end = cpuValue.find('_', start)) != std::string::npos) { cores.push_back(cpuValue.substr(start, end - start)); start = end + 1; } cores.push_back(cpuValue.substr(start)); // 添加最后一部分 for (auto& core : cores) { // 手动转换整数(替代std::stoi) const char* str = core.c_str(); char* endptr = nullptr; long value = strtol(str, &endptr, 10); // 检查转换是否有效 if (endptr != str && *endptr == '\0') { // 校正超范围值 if (value > 100) value /= 100; core = std::to_string(value); } // 转换失败保持原值 } std::string result; for (size_t i = 0; i < cores.size(); ++i) { if (i > 0) result += '_'; result += cores[i]; } return result; } // 处理单核格式 else { const char* str = cpuValue.c_str(); char* endptr = nullptr; long value = strtol(str, &endptr, 10); // 检查转换是否有效 if (endptr != str && *endptr == '\0') { if (value > 100) value /= 100; return std::to_string(value); } return cpuValue; } }; // 分割字段并处理 std::vector fields; size_t start = 0; while (start < payload.length()) { size_t end = payload.find(',', start); if (end == std::string::npos) { fields.push_back(payload.substr(start)); break; } fields.push_back(payload.substr(start, end - start)); start = end + 1; } for (const auto& field : fields) { // 跳过空字段 if (field.empty()) continue; // 查找冒号位置 size_t colonPos = field.find(':'); if (colonPos == std::string::npos || colonPos == 0 || colonPos == field.length() - 1) { continue; } // 分割键值对 std::string key = field.substr(0, colonPos); std::string value = field.substr(colonPos + 1); // 去除键的空白 size_t keyStart = key.find_first_not_of(" \t"); size_t keyEnd = key.find_last_not_of(" \t"); if (keyStart != std::string::npos && keyEnd != std::string::npos) { key = key.substr(keyStart, keyEnd - keyStart + 1); } // 去除值的空白 size_t valStart = value.find_first_not_of(" \t"); size_t valEnd = value.find_last_not_of(" \t"); if (valStart != std::string::npos && valEnd != std::string::npos) { value = value.substr(valStart, valEnd - valStart + 1); } // 去除值两端的引号 if (value.size() >= 2 && value.front() == '"' && value.back() == '"') { value = value.substr(1, value.size() - 2); } // 尝试将键转换为整数 const char* keyStr = key.c_str(); char* endPtr = nullptr; long fieldId = strtol(keyStr, &endPtr, 10); // 检查转换是否有效 if (endPtr != keyStr && *endPtr == '\0' && fieldId >= 1 && fieldId <= 10) { switch (fieldId) { case 1: result.Time = value; break; case 2: result.CpuLoad = value; break; case 3: result.FreeMemory = value; break; case 4: result.TotalMemory = value; break; case 5: result.FreeStorage = value; break; case 6: result.TotalStorage = value; break; case 7: result.HardTimeSync = value; break; case 8: result.SntpTimeSync = value; break; case 9: result.CloudTimeSync = value; break; case 10: result.SignalStrength = value; break; default: break; } } } // 特殊处理CPU负载 result.CpuLoad = processCpuLoad(result.CpuLoad); // 打印解析结果(实际应用中可替换为其他处理逻辑) std::cout << "Device Running Information (" << mac << "):\n" << " Time: " << result.Time << "\n" << " CPU Load: " << result.CpuLoad << "\n" << " Memory: " << result.FreeMemory << "/" << result.TotalMemory << " MB\n" << " Storage: " << result.FreeStorage << "/" << result.TotalStorage << " GB\n" << " Time Sync: Hard=" << result.HardTimeSync << ", SNTP=" << result.SntpTimeSync << ", Cloud=" << result.CloudTimeSync << "\n" << " Signal: " << result.SignalStrength << std::endl; //读取装置运行信息(主动触发)成功,调整为空闲,处理后续工作。 ClientManager::instance().change_device_state(id, DeviceState::IDLE); } else { // 装置答非所问异常 // 读取装置运行信息(定时触发)失败,调整为空闲状态,处理下一项工作。 ClientManager::instance().change_device_state(id, DeviceState::IDLE); } break; case DeviceState::READING_DEVVERSION: //读取装置版本配置信息(功能码同运行信息读取)(运维协议确认对时版本,电度与高频谐波开关,稳态间隔获取,版本配置上送) if (udata[8] == static_cast(MsgResponseType::Response_Read_RunningInformation)) { // 获取解析后的数据体 std::vector& recvData = parser.RecvData; // 检查数据长度是否足够 if (recvData.size() < 2) { std::cerr << "Invalid running information data: too short (" << recvData.size() << " bytes)" << std::endl; ClientManager::instance().change_device_state(id, DeviceState::IDLE); break; } // 提取有效载荷长度 size_t payloadLength = recvData.size() - 2; // 复制有效载荷数据 std::vector payloadBytes(payloadLength); if (recvData.size() >= 2 + payloadLength) { std::copy(recvData.begin() + 2, recvData.begin() + 2 + payloadLength, payloadBytes.begin()); } else { std::cerr << "Invalid payload length: " << payloadLength << ", available: " << (recvData.size() - 2) << std::endl; ClientManager::instance().change_device_state(id, DeviceState::IDLE); break; } // 转换为UTF-8字符串 std::string payload(payloadBytes.begin(), payloadBytes.end()); // 定义存储装置版本信息的结构体 struct DeviceVersionInfo { std::string BaseModel; // 1: 装置基础型号 std::string CloudProtocolVer; // 2: 云服务协议版本 std::string AppVersion; // 3: 应用程序版本号 std::string AppDate; // 4: 应用程序版本日期 std::string AppChecksum; // 5: 应用程序校验码 std::string VoltageWiring; // 6: 电压接线方式 std::string CurrentBSynthetic; // 7: 电流B相是否合成 int DataStatInterval = 0; // 8: 数据统计时间间隔(分钟) float RatedVoltage = 0.0f; // 9: 额定电压(二次值,单位V) float PTRatio = 0.0f; // 10: PT变比 float CTRatio = 0.0f; // 11: CT变比 std::string SntpIP; // 12: sntp对时IP int SntpPort = 0; // 13: sntp对时端口 int SntpInterval = 0; // 14: sntp对时间隔(分钟) int WebPort = 0; // 15: Web端口 int FtpPort = 0; // 16: ftp端口 int PqdifInterval = 0; // 17: Pqdif文件时间间隔(小时) int WaveFileTypeCount = 0; // 18: 录波文件包含文件类型数 std::string SpecialVersion; // 19: 特殊程序版本信息 std::string DeviceModel; // 20: 装置型号 int HarmonicEnergyFlag = 0; // 21: 谐波电度版本标志 std::string PhysicalName; // 22: 物理设备名称 std::string WaveLDName; // 23: 录波LD名称 int HighFreqHarmonicFlag = 0; // 24: 高频谐波功能标志 unsigned int CommProtocols = 0; // 51: 投入的通讯协议 unsigned int TimeSyncMethods = 0;// 52: 投入的对时方式 unsigned int DeviceFunctions = 0;// 53: 装置功能配置 } versionInfo; // 分割字段 std::vector fields; size_t start = 0; while (start < payload.length()) { size_t end = payload.find(',', start); if (end == std::string::npos) { fields.push_back(payload.substr(start)); break; } fields.push_back(payload.substr(start, end - start)); start = end + 1; } // 处理每个字段 for (const auto& field : fields) { if (field.empty()) continue; // 分割键值对 size_t colonPos = field.find(':'); if (colonPos == std::string::npos || colonPos == 0) continue; std::string key = field.substr(0, colonPos); std::string value = field.substr(colonPos + 1); // 去除键值两端的空白和引号 auto trim = [](std::string str) -> std::string { size_t start = str.find_first_not_of(" \t\""); size_t end = str.find_last_not_of(" \t\""); return (start == std::string::npos) ? "" : str.substr(start, end - start + 1); }; key = trim(key); value = trim(value); // 转换为信息编码ID try { int fieldId = std::stoi(key); switch (fieldId) { // 字符串类型字段 case 1: versionInfo.BaseModel = value; break; case 2: versionInfo.CloudProtocolVer = value; break; case 3: versionInfo.AppVersion = value; break; case 4: versionInfo.AppDate = value; break; case 5: versionInfo.AppChecksum = value; break; case 6: versionInfo.VoltageWiring = value; break; case 7: versionInfo.CurrentBSynthetic = value; break; case 12: versionInfo.SntpIP = value; break; case 19: versionInfo.SpecialVersion = value; break; case 20: versionInfo.DeviceModel = value; break; case 22: versionInfo.PhysicalName = value; break; case 23: versionInfo.WaveLDName = value; break; // 数值类型字段 case 8: versionInfo.DataStatInterval = std::stoi(value); break; case 9: versionInfo.RatedVoltage = std::stof(value); break; case 10: versionInfo.PTRatio = std::stof(value); break; case 11: versionInfo.CTRatio = std::stof(value); break; case 13: versionInfo.SntpPort = std::stoi(value); break; case 14: versionInfo.SntpInterval = std::stoi(value); break; case 15: versionInfo.WebPort = std::stoi(value); break; case 16: versionInfo.FtpPort = std::stoi(value); break; case 17: versionInfo.PqdifInterval = std::stoi(value); break; case 18: versionInfo.WaveFileTypeCount = std::stoi(value); break; case 21: versionInfo.HarmonicEnergyFlag = std::stoi(value); break; case 24: versionInfo.HighFreqHarmonicFlag = std::stoi(value); break; // 十六进制字段(51+) case 51: case 52: case 53: { if (value.size() > 2 && value.substr(0, 2) == "0x") { unsigned int hexValue = std::stoul(value.substr(2), nullptr, 16); switch (fieldId) { case 51: versionInfo.CommProtocols = hexValue; break; case 52: versionInfo.TimeSyncMethods = hexValue; break; case 53: versionInfo.DeviceFunctions = hexValue; break; } } break; } } } catch (const std::exception& e) { std::cerr << "Error parsing field: " << field << ", error: " << e.what() << std::endl; } } //云协议版本非空则赋值,未赋值则使用默认的V1.0 if (!versionInfo.CloudProtocolVer.empty()) { ClientManager::instance().set_versioninformation(id, versionInfo.CloudProtocolVer); } // 打印解析结果 std::cout << "Device Version Info (" << mac << "):\n" << " Base Model: " << versionInfo.BaseModel << "\n" << " Cloud Protocol: " << versionInfo.CloudProtocolVer << "\n" << " App Version: " << versionInfo.AppVersion << "\n" << " App Date: " << versionInfo.AppDate << "\n" << " PT Ratio: " << versionInfo.PTRatio << "\n" << " CT Ratio: " << versionInfo.CTRatio << "\n" << " Wave File Types: " << versionInfo.WaveFileTypeCount << "\n" << " Comm Protocols: 0x" << std::hex << versionInfo.CommProtocols << "\n" << " Time Sync Methods: 0x" << versionInfo.TimeSyncMethods << "\n" << " Device Functions: 0x" << versionInfo.DeviceFunctions << std::dec << "\n"; //读取装置版本配置信息成功,调整为空闲,处理后续工作。 ClientManager::instance().change_device_state(id, DeviceState::IDLE); } else { // 装置答非所问异常 // 读取装置版本配置信息失败,调整为空闲状态,处理下一项工作。 ClientManager::instance().change_device_state(id, DeviceState::IDLE); } break; case DeviceState::SET_RIGHTTIME: //设置装置对时 if (udata[8] == static_cast(MsgResponseType::Response_NewACK)) { std::cout << "set success" << mac << std::endl; //对时设置成功,调整为空闲,处理后续工作。 ClientManager::instance().change_device_state(id, DeviceState::IDLE); } else if (udata[8] == static_cast(MsgResponseType::Response_NewNACK)) { std::cout << "set error" << mac << std::endl; std::cout << "reason code: " << static_cast(udata[8]) << "-" << static_cast(udata[9]) << "-" << static_cast(udata[10]) << "-" << static_cast(udata[11]) << std::endl; // 装置否定应答,对时设置失败 // 设置对时失败,调整为空闲状态,处理下一项工作。 ClientManager::instance().change_device_state(id, DeviceState::IDLE); } else { // 装置答非所问异常 // 设置对时失败,调整为空闲状态,处理下一项工作。 ClientManager::instance().change_device_state(id, DeviceState::IDLE); } break; case DeviceState::READING_EVENTLOG: //补招装置日志 if (udata[8] == static_cast(MsgResponseType::Response_Read_Event)) { std::cout << "set success" << mac << std::endl; std::cout << "reason code: " << static_cast(udata[8]) << "-" << static_cast(udata[9]) << "-" << static_cast(udata[10]) << "-" << static_cast(udata[11]) << std::endl; if (parser.RecvData.size() >= 14) { // 提取当前帧 int current_frame = 0; if (parser.RecvData.size() >= 4) { std::vector frame_data(parser.RecvData.begin(), parser.RecvData.begin() + 4); std::reverse(frame_data.begin(), frame_data.end()); // 字节反转 current_frame = *reinterpret_cast(frame_data.data()); } // 提取总帧数 int total_frames = 0; if (parser.RecvData.size() >= 8) { std::vector total_frame_data(parser.RecvData.begin() + 4, parser.RecvData.begin() + 8); std::reverse(total_frame_data.begin(), total_frame_data.end()); // 字节反转 total_frames = *reinterpret_cast(total_frame_data.data()); } // 提取文件总大小 int file_size = 0; if (parser.RecvData.size() >= 12) { std::vector size_data(parser.RecvData.begin() + 8, parser.RecvData.begin() + 12); std::reverse(size_data.begin(), size_data.end()); // 字节反转 file_size = *reinterpret_cast(size_data.data()); } // 提取CRC校验码 uint16_t crc = 0; if (parser.RecvData.size() >= 14) { std::vector crc_data(parser.RecvData.begin() + 12, parser.RecvData.begin() + 14); std::reverse(crc_data.begin(), crc_data.end()); // 字节反转 crc = *reinterpret_cast(crc_data.data()); } // 提取文件数据 std::vector file_data; if (parser.RecvData.size() > 14) { file_data.assign(parser.RecvData.begin() + 14, parser.RecvData.end()); } // 将数据添加到缓存(使用类似READING_STATS的逻辑) bool complete = ClientManager::instance().add_eventlog_packet_to_device( id, file_data, current_frame, total_frames ); std::cout << "event log:" << current_frame << "/" << total_frames << std::endl; // 检查是否收全所有帧 if (complete) { // 1. 获取并清空缓存数据包 auto packets = ClientManager::instance().get_and_clear_event_packets(id); // 2. 按帧序号排序 std::sort(packets.begin(), packets.end(), [](const ClientContext::StatPacket& a, const ClientContext::StatPacket& b) { return a.packet_index < b.packet_index; }); // 3. 解析每帧数据并提取数据体 std::vector full_data; for (const auto& packet : packets) { // 将数据体添加到完整序列 full_data.insert(full_data.end(), packet.data.begin(), packet.data.end()); } //确认待补招序号 // 获取测点参数 int event_lineid = 0; std::string strScale;//电压等级 int nPTType;//接线方式 float fPT = 1.0f; float fCT = 1.0f; if (!ClientManager::instance().get_event_lineid(id, event_lineid)) { //取出补招序号失败!暂态补招结束 //补招装置日志获取完毕,调整为空闲状态,处理下一项工作。 ClientManager::instance().change_device_state(id, DeviceState::IDLE); break; } if (!ClientManager::instance().get_point_scale_and_pttype( id, event_lineid, strScale, nPTType) || !ClientManager::instance().get_pt_ct_ratio(id, event_lineid, fPT, fCT)) { //取出解析方式,PTCT,电压等级失败!暂态补招结束 //补招装置日志获取完毕,调整为空闲状态,处理下一项工作。 ClientManager::instance().change_device_state(id, DeviceState::IDLE); break; } // ========== 新增:解析full_data中的NewTaglogbuffer对象列表 ========== std::list eventList; size_t offset = 0; const size_t headSize = sizeof(NewHeadTaglogbuffer); const size_t bodyItemSize = sizeof(NewBodyTaglogbuffer); while (offset + headSize <= full_data.size()) { // 读取头部 NewHeadTaglogbuffer head; memcpy(&head, full_data.data() + offset, headSize); head.convertByteOrder(); // 转换字节序 uint32_t logParaNum = head.LogParaNum; // 计算身体部分在full_data中占用的空间(最少4个身体项的空间) size_t bodySpace; if (logParaNum <= 4) { bodySpace = 4 * bodyItemSize; } else { bodySpace = logParaNum * bodyItemSize; } // 检查剩余数据是否足够 if (offset + headSize + bodySpace > full_data.size()) { std::cerr << "Insufficient data for event body at offset " << offset << std::endl; break; } // 创建事件对象并设置头部 NewTaglogbuffer event; event.head = head; event.bodyList.resize(logParaNum); // 解析身体部分 const uint8_t* bodyData = full_data.data() + offset + headSize; for (uint32_t i = 0; i < logParaNum; ++i) { memcpy(&event.bodyList[i], bodyData, bodyItemSize); event.bodyList[i].convertByteOrder(); bodyData += bodyItemSize; } //当前解析事件和待补招测点一致,则加入队列 if (event.head.name == event_lineid) { eventList.push_back(event); } // 移动偏移量,跳过头部和身体占用空间(包括填充) offset += headSize + bodySpace; } // 现在eventList中包含所有解析的事件对象,可以在这里进行处理 std::cout << "Parsed " << eventList.size() << " events from event log." << std::endl; std::list recordlist; for (const auto& event : eventList) { QVVRRecord record = DynamicLog_GetQVVRRecordFromLogBuffer( strScale, nPTType, fPT, event); // 使用记录数据(示例:打印到控制台) std::cout << "事件类型: " << record.nType << ", 持续时间: " << record.fPersisstime << "s" << ", 特征幅值: " << record.fMagntitude << " pu" << ", 时间戳: " << record.triggerTimeMs << "ms" << std::endl; //记录补招上来的暂态事件 append_qvvr_event(id,event.head.name, record.nType,record.fPersisstime,record.fMagntitude,record.triggerTimeMs,record.phase); //直接发走暂态事件 transfer_json_qvvr_data(id,event.head.name, record.fMagntitude,record.fPersisstime,record.triggerTimeMs,record.nType,record.phase,""); //通知状态机补招暂态事件成功 on_device_response_minimal(static_cast(ResponseCode::OK), id, 0, static_cast(DeviceState::READING_EVENTLOG)); recordlist.push_back(record); } //暂时移除CRC校验相关 //// ========== 新增 CRC 验证 ========== //if (!full_data.empty()) { // // 计算接收数据的 CRC // uint16_t calculated_crc = crc_16_new(full_data.data(), full_data.size()); // // 比较计算出的 CRC 和从报文中提取的 CRC // if (calculated_crc == crc) { // std::cout << "CRC verification passed for event log data." << std::endl; // // 这里可以继续处理完整数据 // } // else { // std::cerr << "CRC verification failed! Expected: " << crc // << ", Calculated: " << calculated_crc << std::endl; // // 处理 CRC 校验失败的情况 // } //} //else { // //收取缓存文件异常,结束补招处理 // std::cerr << "No data received for event log." << std::endl; //} } else { //未收全则直接结束处理,等待后续报文应答 return; } } //补招装置日志获取完毕,调整为空闲状态,处理下一项工作。 ClientManager::instance().change_device_state(id, DeviceState::IDLE); } else if (udata[8] == static_cast(MsgResponseType::Response_NewNACK)) { std::cout << "set error" << mac << std::endl; std::cout << "reason code: " << static_cast(udata[8]) << "-" << static_cast(udata[9]) << "-" << static_cast(udata[10]) << "-" << static_cast(udata[11]) << std::endl; if (udata[10] == static_cast(0x0c)) { //0x0c错误码代表询问暂态数据不存在,通知前台当前时间段无暂态 std::cout << "not find event " << mac << std::endl; //lnk20251023 on_device_response_minimal(static_cast(ResponseCode::NOT_FOUND), id, 0, static_cast(DeviceState::READING_EVENTLOG)); } else if (udata[10] == static_cast(0x06)) { //0x0c错误码代表补招方法参数错误,通知前台参数异常 //lnk20251023 on_device_response_minimal(static_cast(ResponseCode::FORBIDDEN), id, 0, static_cast(DeviceState::READING_EVENTLOG)); } else { //其余错误码代表异常情况 //lnk20251023 on_device_response_minimal(static_cast(ResponseCode::BAD_REQUEST), id, 0, static_cast(DeviceState::READING_EVENTLOG)); } // 装置否定 // 补招装置日志失败,调整为空闲状态,处理下一项工作。 ClientManager::instance().change_device_state(id, DeviceState::IDLE); } else { std::cout << "set unknow error" << mac << std::endl; std::cout << "reason code: " << static_cast(udata[8]) << "-" << static_cast(udata[9]) << "-" << static_cast(udata[10]) << "-" << static_cast(udata[11]) << std::endl; // 装置答非所问异常 // 补招装置日志失败,调整为空闲状态,处理下一项工作。 ClientManager::instance().change_device_state(id, DeviceState::IDLE); } break; case DeviceState::CUSTOM_ACTION: // 自定义动作状态 std::cout << "CUSTOM_ACTION state: Processing custom response from " << mac << std::endl; // 这里添加处理自定义动作响应的逻辑 // 处理完成后标记状态完成 ClientManager::instance().change_device_state(id, DeviceState::IDLE); break; default: std::cerr << "Unknown state: " << static_cast(currentState) << " for device " << id << std::endl; break; } // 无论何种状态,处理完成后触发后续状态处理 ClientManager::instance().post_message_processing(id); } } }