1.数据插入改为多线程

2.添加定时任务
This commit is contained in:
wr
2023-10-30 08:45:24 +08:00
parent 8c16d524e5
commit fc5a1cc78b
9 changed files with 367 additions and 219 deletions

View File

@@ -3,9 +3,13 @@ package com.njcn.jbsyncdata;
import org.mybatis.spring.annotation.MapperScan;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.scheduling.annotation.EnableAsync;
import org.springframework.scheduling.annotation.EnableScheduling;
@MapperScan("com.njcn.**.mapper")
@SpringBootApplication(scanBasePackages = "com.njcn")
@EnableScheduling
@EnableAsync
public class JbSyncdataApplication {
public static void main(String[] args) {

View File

@@ -0,0 +1,47 @@
package com.njcn.jbsyncdata.config;
import lombok.AllArgsConstructor;
import lombok.Data;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.annotation.Order;
import org.springframework.scheduling.annotation.EnableAsync;
import org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor;
import java.util.concurrent.Executor;
import java.util.concurrent.ThreadPoolExecutor;
/**
* @author hongawen
* @version 1.0.0
* @date 2022年03月11日 09:32
*/
@Data
@Order(100)
@Configuration
@EnableAsync
@AllArgsConstructor
public class AsyncConfiguration {
private final GeneralInfo generalInfo;
@Bean("asyncExecutor")
public Executor asyncExecutor() {
ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
// 核心线程数:线程池创建时候初始化的线程数
executor.setCorePoolSize(generalInfo.getCorePoolSize());
// 最大线程数:线程池最大的线程数,只有在缓冲队列满了之后才会申请超过核心线程数的线程
executor.setMaxPoolSize(generalInfo.getMaxPoolSize());
// 缓冲队列:用来缓冲执行任务的队列
executor.setQueueCapacity(generalInfo.getQueueCapacity());
// 允许线程的空闲时间60秒当超过了核心线程之外的线程在空闲时间到达之后会被销毁
executor.setKeepAliveSeconds(generalInfo.getKeepAliveSeconds());
// 线程池名的前缀:设置好了之后可以方便我们定位处理任务所在的线程池
executor.setThreadNamePrefix(generalInfo.getMicroServiceName());
// 缓冲队列满了之后的拒绝策略:由调用线程处理(一般是主线程)
executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());
executor.initialize();
return executor;
}
}

View File

@@ -0,0 +1,33 @@
package com.njcn.jbsyncdata.config;
import lombok.Data;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.annotation.Order;
/**
* @author hongawen
* @version 1.0.0
* @date 2021年08月19日 15:56
*/
@Data
@Configuration
@Order(10)
public class GeneralInfo {
@Value("${microservice.ename}")
private String microServiceName;
@Value("${threadPool.corePoolSize}")
private int corePoolSize;
@Value("${threadPool.maxPoolSize}")
private int maxPoolSize;
@Value("${threadPool.queueCapacity}")
private int queueCapacity;
@Value("${threadPool.keepAliveSeconds}")
private int keepAliveSeconds;
}

View File

@@ -1,14 +1,10 @@
package com.njcn.jbsyncdata.controller;
import cn.hutool.core.collection.CollectionUtil;
import cn.hutool.core.date.DatePattern;
import cn.hutool.core.date.DateTime;
import cn.hutool.core.date.DateUtil;
import cn.hutool.core.io.file.FileReader;
import cn.hutool.core.text.StrPool;
import cn.hutool.core.date.DatePattern;
import cn.hutool.core.util.StrUtil;
import com.alibaba.excel.EasyExcel;
import com.alibaba.excel.support.ExcelTypeEnum;
import com.njcn.jbsyncdata.pojo.DisPhotovoltaic10Excel;
import com.njcn.jbsyncdata.pojo.DisPhotovoltaic380Excel;
import com.njcn.jbsyncdata.service.DisPhotovoltaicService;
@@ -19,13 +15,13 @@ import io.swagger.annotations.ApiOperation;
import lombok.RequiredArgsConstructor;
import lombok.extern.slf4j.Slf4j;
import org.springframework.http.MediaType;
import org.springframework.scheduling.annotation.Scheduled;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import org.springframework.web.multipart.MultipartFile;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;
import java.util.*;
import java.util.stream.Collectors;
@@ -124,5 +120,15 @@ public class DisPhotovoltaicController {
}
return "数据导入失败";
}
@Scheduled(cron = "0 30 8 * * ?")
public void insert() {
log.error(Thread.currentThread().getName(),"1.定时器启动----");
DateTime dateTime = DateUtil.offsetDay(new Date(), -1);
String s=dateTime.toString();
String ds = s.substring(0, s.indexOf(" "));
log.error(Thread.currentThread().getName() + "2.定时器执行数据日期 "+ds+"----");
businessService.queryTelemetryData(ds);
log.error(Thread.currentThread().getName() + "2.定时器执行数据成功 "+ds+"----");
}
}

View File

@@ -23,6 +23,9 @@ public enum MeasTypeEnum {
TOTW("TotW", "有功", "T","data_harmpower_p","p"),
TOTVAR("TotVar", "无功", "T","data_harmpower_q","q");
// A_V3("HphV3_phsA", "A相电压3次谐波值", "A","data_v","v3"),
// B_V3("HphV3_phsB", "A相电压3次谐波值", "B","data_v","v3"),
// C_V3("Hphv3_phsC", "A相电压3次谐波值", "C","data_v","v3");
//冀北指标名称
private final String measType;

View File

@@ -1,40 +1,24 @@
package com.njcn.jbsyncdata.service.impl;
import cn.hutool.core.collection.CollectionUtil;
import cn.hutool.core.date.DatePattern;
import cn.hutool.core.date.DateTime;
import cn.hutool.core.date.DateUtil;
import cn.hutool.core.io.file.FileWriter;
import cn.hutool.core.map.MapUtil;
import cn.hutool.core.text.StrPool;
import cn.hutool.core.util.StrUtil;
import cn.hutool.json.JSONArray;
import cn.hutool.json.JSONObject;
import cn.hutool.json.JSONUtil;
import com.njcn.influx.utils.InfluxDbUtils;
import com.njcn.jbsyncdata.component.TokenComponent;
import com.njcn.jbsyncdata.enums.MeasTypeEnum;
import com.njcn.jbsyncdata.pojo.ExcelData;
import com.njcn.jbsyncdata.pojo.result.*;
import com.njcn.jbsyncdata.service.IBusinessService;
import com.njcn.jbsyncdata.service.IPmsPowerGenerationUserService;
import com.njcn.jbsyncdata.util.DataProcessing;
import com.njcn.jbsyncdata.util.RestTemplateUtil;
import lombok.extern.slf4j.Slf4j;
import org.apache.commons.collections4.ListUtils;
import org.apache.commons.collections4.MapUtils;
import org.apache.commons.collections4.SetUtils;
import org.apache.commons.lang3.StringUtils;
import org.influxdb.InfluxDB;
import org.influxdb.dto.BatchPoints;
import org.influxdb.dto.Point;
import org.springframework.http.ResponseEntity;
import org.springframework.scheduling.annotation.Async;
import org.springframework.stereotype.Service;
import javax.annotation.Resource;
import java.io.File;
import java.util.*;
import java.util.concurrent.TimeUnit;
import java.util.stream.Collectors;
@Slf4j
@Service
@@ -45,7 +29,7 @@ public class BusinessServiceImpl implements IBusinessService {
private TokenComponent tokenComponent;
@Resource
private InfluxDbUtils influxDbUtils;
private DataProcessing dataProcessing;
@Resource
private IPmsPowerGenerationUserService pmsPowerGenerationUserService;
@@ -65,6 +49,7 @@ public class BusinessServiceImpl implements IBusinessService {
* 4. StatisticsData统计数据的实际数值measValue为null-----对应时间、指标的数值设置为0
*/
@Override
@Async("asyncExecutor")
public void queryTelemetryData(String date) {
DateTime dateTemp = DateUtil.parse(date, DatePattern.NORM_DATE_FORMAT);
DateTime beginOfDay = DateUtil.beginOfDay(dateTemp);
@@ -97,188 +82,9 @@ public class BusinessServiceImpl implements IBusinessService {
List<String> userIds = pmsPowerGenerationUserService.queryAllUserId();
List<List<String>> singleQueryDataUserId = ListUtils.partition(userIds, 20000);
for (int k = 0; k < singleQueryDataUserId.size(); k++) {
//将发电用户编号按100尺寸分片
List<List<String>> partitionList = ListUtils.partition(singleQueryDataUserId.get(k), 100);
log.error("总计分了{}片", partitionList.size());
int count = 0;
tokenWithRestTemplate = tokenComponent.getTokenWithRestTemplate();
headers.put("x-token", tokenWithRestTemplate.getAccess_token());
//先获取数据
List<ResponseEntity<String>> responseEntities = new ArrayList<>(2000);
int kk = k + 1;
for (List<String> generationUserIDList : partitionList) {
count++;
log.error("查询第{}大片,{}小片数据", kk, count);
//按批次处理用户编号数据
jsonObjectSub.set("consNos", generationUserIDList);
JSONArray jsonArray = JSONUtil.createArray();
jsonArray.add(jsonObjectSub);
jsonObject.set("filters", jsonArray);
try {
responseEntities.add(restTemplateUtil.post(tokenComponent.getUrl().concat("/realMeasCenter/telemetry/commonQuery"), headers, jsonObject, String.class));
} catch (Exception exception) {
log.error("远程调用接口异常,异常为:" + exception);
}
}
//开始解析数据
Set<String> userIdConcatMeasType = new HashSet<>();
//将指标+客户编号组合起来匹配返回数据的第一条记录:userId@measType
for (String measType : typeList) {
userIdConcatMeasType.addAll(singleQueryDataUserId.get(k).stream().map(t -> t.concat(StrPool.AT).concat(measType)).collect(Collectors.toSet()));
}
List</*各值以逗号分隔*/String> influxData;
Map</*表名*/String, List</*各值以逗号分隔*/String>> typeData = new HashMap<>();
StringBuilder tempInfluxData;
ResponseEntity<String> response;
JSONArray statisticsDataList;
JSONObject result;
JSONObject statisticsData;
JSONObject body;
JSONArray records;
String dataIdentify;
JSONObject commonTelemetry;
MeasTypeEnum measTypeEnumByMeasType;
for (int i = 0; i < partitionList.size(); i++) {
log.error("解析第{}片数据", i);
response = responseEntities.get(i);
body = JSONUtil.parseObj(response.getBody());
if (response.getStatusCodeValue() == 200 && body.get("status", String.class).equalsIgnoreCase("000000")) {
result = JSONUtil.parseObj(body.get("result", String.class));
records = JSONUtil.parseArray(result.get("records", String.class));
log.error("查询遥测数据结束,返回数据量:{}", records.size());
if (CollectionUtil.isEmpty(records)) {
//日志输出:
log.error("查询时间:{},无遥测数据;", date);
continue;
}
//处理各个record的数据因用户下可能有多个测量点按指标循环默认采用第一个匹配上的做数据处理
for (Object obj : records) { // 最多循环100*16次
commonTelemetry = JSONUtil.parseObj(obj);
dataIdentify = commonTelemetry.get("consNo", String.class).concat(StrPool.AT).concat(commonTelemetry.get("measTypeCode", String.class));
if (userIdConcatMeasType.contains(dataIdentify)) {
//首个包含该标识的数据进行处理
measTypeEnumByMeasType = MeasTypeEnum.getMeasTypeEnumByMeasType(commonTelemetry.get("measTypeCode", String.class));
//统计数据经过测试接口响应json可能不包含该属性
statisticsDataList = commonTelemetry.get("telemetryValue", JSONArray.class);
if (CollectionUtil.isEmpty(statisticsDataList)) {
//添加进有指标但无遥测数据集合
continue;
}
influxData = new ArrayList<>();
for (Object subObj : statisticsDataList) { // 匹配上进入循环96次
statisticsData = JSONUtil.parseObj(subObj);
tempInfluxData = new StringBuilder();
tempInfluxData.append(measTypeEnumByMeasType.getPhaseType())
.append(StrPool.COMMA)
.append(commonTelemetry.get("consNo", String.class))
.append(StrPool.COMMA)
.append(statisticsData.get("dataTime", String.class))
.append(StrPool.COMMA)
.append(measTypeEnumByMeasType.getFieldName())
.append(StrPool.COMMA)
.append(StrUtil.isBlank(statisticsData.get("measValue", String.class)) ? "0" : statisticsData.get("measValue", String.class));
influxData.add(tempInfluxData.toString());
}
//userId@measType@tableName:存在多个指标存储表名一致,避免数据覆盖;
typeData.put(commonTelemetry.get("consNo", String.class).concat(StrPool.AT).concat(measTypeEnumByMeasType.getMeasType()).concat(StrPool.AT).concat(measTypeEnumByMeasType.getTableName()), influxData);
//处理完,删除该条记录,减少集合尺寸,提高效率
userIdConcatMeasType.remove(dataIdentify);
}
}
//没有匹配上的就是该用户没有数据
log.error("剩余有{}条标识", userIdConcatMeasType.size());
} else {
log.error("查询遥测数据失败!第{}片,结果为:{}", count, response);
}
}
//最后输出没有数据的用户编号
/**
* 输出到2个文件lackData.txt、 excalationData.txt
* 注用户号去除160前缀
* 1、所有指标均没有有数据的用户编号
* 2、部分指标没有数据的用户编号并表明是哪些指标
*/
if (CollectionUtil.isNotEmpty(userIdConcatMeasType)) {
Map<String, List<String>> finalMap = userIdConcatMeasType.stream().collect(Collectors.groupingBy(str -> {
String key = str.substring(3);
key = key.substring(0, key.indexOf(StrPool.AT));
return key;
}));
//全部缺失数据的用户
List<String> lackData = new ArrayList<>();
//部分缺失的用户及指标
List<String> excalationData = new ArrayList<>();
Set<String> keyedSet = finalMap.keySet();
for (String key : keyedSet) {
List<String> data = finalMap.get(key);
if (data.size() == typeList.size()) {
lackData.add(key);
} else {
data = data.stream().map(t -> t.substring(t.indexOf(StrPool.AT) + 1)).collect(Collectors.toList());
key = key.concat(StrPool.COMMA).concat(StringUtils.join(data, StrPool.AT));
excalationData.add(key);
}
}
FileWriter lackDataWriter = FileWriter.create(new File("/usr/local/syncData/lackData" + date + k + ".txt"));
lackDataWriter.writeLines(lackData);
FileWriter excalationDataWriter = FileWriter.create(new File("/usr/local/syncData/excalationData" + date + k + ".txt"));
excalationDataWriter.writeLines(excalationData);
}
log.error("用户有指标没有数据的长度为:{}", userIdConcatMeasType.size());
//最后批量入库
batchInsertData(typeData);
dataProcessing.asyncInfluxDb(tokenComponent,date, restTemplateUtil, typeList, jsonObject, jsonObjectSub, headers, singleQueryDataUserId, k);
}
}
/**
* 批量入库influxDB
*
* @param typeData 远程根据用户编号获取的数据 Map</表名/String, List<Map</属性名/String,/数值/String>>> typeData = new HashMap<>();
*/
private void batchInsertData(Map<String, List<String>> typeData) {
log.error("总计有{}条记录入库以20000作为基数分片插入influxdb", typeData.size());
List<String> sqlList = new ArrayList<>();
Set<String> tableNames = typeData.keySet();
String[] datas;
Map<String, String> tags;
Map<String, Object> fields;
Point point;
BatchPoints batchPoints;
for (String tableName : tableNames) {
List<String> data = typeData.get(tableName);
tableName = tableName.substring(tableName.lastIndexOf(StrPool.AT) + 1);
for (String datum : data) {
datas = datum.split(StrPool.COMMA);
//tag数据
tags = new HashMap<>();
tags.put("phasic_type", datas[0]);
tags.put("line_id", datas[1]);
tags.put("quality_flag", "0");
tags.put("value_type", "AVG");
String time = datas[2];
//tag数据删完后剩余均是filed数据,因filed属性名不固定无法指定获取直接循环
fields = new HashMap<>();
fields.put(datas[3], datas[4]);
point = influxDbUtils.pointBuilder(tableName, DateUtil.parse(time, DatePattern.NORM_DATETIME_FORMATTER).getTime(), TimeUnit.MILLISECONDS, tags, fields);
batchPoints = BatchPoints.database(influxDbUtils.getDbName()).retentionPolicy("").consistency(InfluxDB.ConsistencyLevel.ALL).build();
batchPoints.point(point);
sqlList.add(batchPoints.lineProtocol());
}
}
List<List<String>> subSqlList = ListUtils.partition(sqlList, 20000);
int count = 1;
for (List<String> sql : subSqlList) {
try {
influxDbUtils.batchInsert(influxDbUtils.getDbName(), "autogen", InfluxDB.ConsistencyLevel.ALL, TimeUnit.MILLISECONDS, sql);
} catch (Exception exception) {
log.error("数据批量入库异常,异常为:{}",exception.toString());
exception.printStackTrace();
}
log.error("已经入库{}条记录!", count * 20000);
count++;
}
log.error("当前批次所有数据,{}条均已入库!", sqlList.size());
}
}

View File

@@ -74,7 +74,7 @@ public class DisPhotovoltaicServiceImpl implements DisPhotovoltaicService {
excel.getLineID()
)
) {
excel.setErrorMessage("线路/台区编号不能为空");
excel.setErrorMessage("台区编号/PMS系统线路编号不能为空");
errorInfo.add(excel);
continue;
}
@@ -82,7 +82,7 @@ public class DisPhotovoltaicServiceImpl implements DisPhotovoltaicService {
String replace = subString(excel.getCounty());
PmsStatationStat sub = getSub(excel.getPowerSupply() + "_" + replace, oldSubMap);
if (ObjectUtil.isNull(sub)) {
excel.setErrorMessage("部门信息不存在");
excel.setErrorMessage("区县信息不存在");
errorInfo.add(excel);
continue;
}
@@ -129,10 +129,10 @@ public class DisPhotovoltaicServiceImpl implements DisPhotovoltaicService {
info.add(user);
}
if (CollUtil.isNotEmpty(info)) {
LambdaQueryWrapper<PmsPowerGenerationUser> lambdaQueryWrapper = new LambdaQueryWrapper<>();
lambdaQueryWrapper.eq(PmsPowerGenerationUser::getInputStatus, 0);
iPmsPowerGenerationUserService.remove(lambdaQueryWrapper);
iPmsPowerGenerationUserService.saveOrUpdateBatch(info, 1000);
// LambdaQueryWrapper<PmsPowerGenerationUser> lambdaQueryWrapper = new LambdaQueryWrapper<>();
// lambdaQueryWrapper.eq(PmsPowerGenerationUser::getInputStatus, 0);
// iPmsPowerGenerationUserService.remove(lambdaQueryWrapper);
// iPmsPowerGenerationUserService.saveOrUpdateBatch(info, 1000);
}
if (CollUtil.isNotEmpty(errorInfo)) {
exportExcel(DateUtil.now() + "_10kV错误信息.xlsx", errorInfo,DisPhotovoltaic10Excel.class, response);
@@ -173,7 +173,7 @@ public class DisPhotovoltaicServiceImpl implements DisPhotovoltaicService {
excel.getConnectionDate()
)
) {
excel.setErrorMessage("并网时间/线路/台区编号不能为空");
excel.setErrorMessage("并网时间/所属线路PMS编号/台区编号不能为空");
errorInfo.add(excel);
continue;
}
@@ -182,7 +182,7 @@ public class DisPhotovoltaicServiceImpl implements DisPhotovoltaicService {
PmsStatationStat sub = getSub(excel.getPowerSupply() + "_" + replace, oldSubMap);
if (ObjectUtil.isNull(sub)) {
excel.setErrorMessage("部门信息不存在");
excel.setErrorMessage("区县信息不存在");
errorInfo.add(excel);
continue;
}
@@ -229,10 +229,10 @@ public class DisPhotovoltaicServiceImpl implements DisPhotovoltaicService {
info.add(user);
}
if (CollUtil.isNotEmpty(info)) {
LambdaQueryWrapper<PmsPowerGenerationUser> lambdaQueryWrapper = new LambdaQueryWrapper<>();
lambdaQueryWrapper.eq(PmsPowerGenerationUser::getInputStatus, 1);
iPmsPowerGenerationUserService.remove(lambdaQueryWrapper);
iPmsPowerGenerationUserService.saveBatch(info, 1000);
// LambdaQueryWrapper<PmsPowerGenerationUser> lambdaQueryWrapper = new LambdaQueryWrapper<>();
// lambdaQueryWrapper.eq(PmsPowerGenerationUser::getInputStatus, 1);
// iPmsPowerGenerationUserService.remove(lambdaQueryWrapper);
// iPmsPowerGenerationUserService.saveBatch(info, 1000);
}
if (CollUtil.isNotEmpty(errorInfo)) {
exportExcel(DateUtil.now() + "_380kV错误信息.xlsx", errorInfo,DisPhotovoltaic380Excel.class, response);

View File

@@ -0,0 +1,239 @@
package com.njcn.jbsyncdata.util;
import cn.hutool.core.collection.CollectionUtil;
import cn.hutool.core.date.DatePattern;
import cn.hutool.core.date.DateUtil;
import cn.hutool.core.io.file.FileWriter;
import cn.hutool.core.text.StrPool;
import cn.hutool.core.util.StrUtil;
import cn.hutool.json.JSONArray;
import cn.hutool.json.JSONObject;
import cn.hutool.json.JSONUtil;
import com.njcn.influx.utils.InfluxDbUtils;
import com.njcn.jbsyncdata.component.TokenComponent;
import com.njcn.jbsyncdata.enums.MeasTypeEnum;
import com.njcn.jbsyncdata.pojo.result.TokenResult;
import lombok.RequiredArgsConstructor;
import lombok.extern.slf4j.Slf4j;
import org.apache.commons.collections4.ListUtils;
import org.apache.commons.lang3.StringUtils;
import org.influxdb.InfluxDB;
import org.influxdb.dto.BatchPoints;
import org.influxdb.dto.Point;
import org.springframework.http.ResponseEntity;
import org.springframework.scheduling.annotation.Async;
import org.springframework.stereotype.Component;
import java.io.File;
import java.util.*;
import java.util.concurrent.TimeUnit;
import java.util.stream.Collectors;
/**
* @author wr
* @description
* @date 2023/10/20 14:14
*/
@Component
@RequiredArgsConstructor
@Slf4j
public class DataProcessing {
private final InfluxDbUtils influxDbUtils;
@Async("asyncExecutor")
public void asyncInfluxDb(
TokenComponent tokenComponent,
String date,
RestTemplateUtil restTemplateUtil,
List<String> typeList,
JSONObject jsonObject,
JSONObject jsonObjectSub,
Map<String, String> headers,
List<List<String>> singleQueryDataUserId, int k
) {
TokenResult tokenWithRestTemplate;
//将发电用户编号按100尺寸分片
List<List<String>> partitionList = ListUtils.partition(singleQueryDataUserId.get(k), 100);
log.error("总计分了{}片", partitionList.size());
int count = 0;
tokenWithRestTemplate = tokenComponent.getTokenWithRestTemplate();
headers.put("x-token", tokenWithRestTemplate.getAccess_token());
//先获取数据
List<ResponseEntity<String>> responseEntities = new ArrayList<>(2000);
int kk = k + 1;
for (List<String> generationUserIDList : partitionList) {
count++;
log.error("查询第{}大片,{}小片数据", kk, count);
//按批次处理用户编号数据
jsonObjectSub.set("consNos", generationUserIDList);
JSONArray jsonArray = JSONUtil.createArray();
jsonArray.add(jsonObjectSub);
jsonObject.set("filters", jsonArray);
try {
responseEntities.add(restTemplateUtil.post(tokenComponent.getUrl().concat("/realMeasCenter/telemetry/commonQuery"), headers, jsonObject, String.class));
} catch (Exception exception) {
log.error("远程调用接口异常,异常为:" + exception);
}
}
//开始解析数据
Set<String> userIdConcatMeasType = new HashSet<>();
//将指标+客户编号组合起来匹配返回数据的第一条记录:userId@measType
for (String measType : typeList) {
userIdConcatMeasType.addAll(singleQueryDataUserId.get(k).stream().map(t -> t.concat(StrPool.AT).concat(measType)).collect(Collectors.toSet()));
}
List</*各值以逗号分隔*/String> influxData;
Map</*表名*/String, List</*各值以逗号分隔*/String>> typeData = new HashMap<>();
StringBuilder tempInfluxData;
ResponseEntity<String> response;
JSONArray statisticsDataList;
JSONObject result;
JSONObject statisticsData;
JSONObject body;
JSONArray records;
String dataIdentify;
JSONObject commonTelemetry;
MeasTypeEnum measTypeEnumByMeasType;
for (int i = 0; i < partitionList.size(); i++) {
log.error("解析第{}片数据", i);
response = responseEntities.get(i);
body = JSONUtil.parseObj(response.getBody());
if (response.getStatusCodeValue() == 200 && body.get("status", String.class).equalsIgnoreCase("000000")) {
result = JSONUtil.parseObj(body.get("result", String.class));
records = JSONUtil.parseArray(result.get("records", String.class));
log.error("查询遥测数据结束,返回数据量:{}", records.size());
if (CollectionUtil.isEmpty(records)) {
//日志输出:
log.error("查询时间:{},无遥测数据;", date);
continue;
}
//处理各个record的数据因用户下可能有多个测量点按指标循环默认采用第一个匹配上的做数据处理
for (Object obj : records) { // 最多循环100*16次
commonTelemetry = JSONUtil.parseObj(obj);
dataIdentify = commonTelemetry.get("consNo", String.class).concat(StrPool.AT).concat(commonTelemetry.get("measTypeCode", String.class));
if (userIdConcatMeasType.contains(dataIdentify)) {
//首个包含该标识的数据进行处理
measTypeEnumByMeasType = MeasTypeEnum.getMeasTypeEnumByMeasType(commonTelemetry.get("measTypeCode", String.class));
//统计数据经过测试接口响应json可能不包含该属性
statisticsDataList = commonTelemetry.get("telemetryValue", JSONArray.class);
if (CollectionUtil.isEmpty(statisticsDataList)) {
//添加进有指标但无遥测数据集合
continue;
}
influxData = new ArrayList<>();
for (Object subObj : statisticsDataList) { // 匹配上进入循环96次
statisticsData = JSONUtil.parseObj(subObj);
tempInfluxData = new StringBuilder();
tempInfluxData.append(measTypeEnumByMeasType.getPhaseType())
.append(StrPool.COMMA)
.append(commonTelemetry.get("consNo", String.class))
.append(StrPool.COMMA)
.append(statisticsData.get("dataTime", String.class))
.append(StrPool.COMMA)
.append(measTypeEnumByMeasType.getFieldName())
.append(StrPool.COMMA)
.append(StrUtil.isBlank(statisticsData.get("measValue", String.class)) ? "0" : statisticsData.get("measValue", String.class));
influxData.add(tempInfluxData.toString());
}
//userId@measType@tableName:存在多个指标存储表名一致,避免数据覆盖;
typeData.put(commonTelemetry.get("consNo", String.class).concat(StrPool.AT).concat(measTypeEnumByMeasType.getMeasType()).concat(StrPool.AT).concat(measTypeEnumByMeasType.getTableName()), influxData);
//处理完,删除该条记录,减少集合尺寸,提高效率
userIdConcatMeasType.remove(dataIdentify);
}
}
//没有匹配上的就是该用户没有数据
log.error("剩余有{}条标识", userIdConcatMeasType.size());
} else {
log.error("查询遥测数据失败!第{}片,结果为:{}", count, response);
}
}
//最后输出没有数据的用户编号
/**
* 输出到2个文件lackData.txt、 excalationData.txt
* 注用户号去除160前缀
* 1、所有指标均没有有数据的用户编号
* 2、部分指标没有数据的用户编号并表明是哪些指标
*/
if (CollectionUtil.isNotEmpty(userIdConcatMeasType)) {
Map<String, List<String>> finalMap = userIdConcatMeasType.stream().collect(Collectors.groupingBy(str -> {
String key = str.substring(3);
key = key.substring(0, key.indexOf(StrPool.AT));
return key;
}));
//全部缺失数据的用户
List<String> lackData = new ArrayList<>();
//部分缺失的用户及指标
List<String> excalationData = new ArrayList<>();
Set<String> keyedSet = finalMap.keySet();
for (String key : keyedSet) {
List<String> data = finalMap.get(key);
if (data.size() == typeList.size()) {
lackData.add(key);
} else {
data = data.stream().map(t -> t.substring(t.indexOf(StrPool.AT) + 1)).collect(Collectors.toList());
key = key.concat(StrPool.COMMA).concat(StringUtils.join(data, StrPool.AT));
excalationData.add(key);
}
}
FileWriter lackDataWriter = FileWriter.create(new File("/usr/local/syncData/lackData" + date + k + ".txt"));
lackDataWriter.writeLines(lackData);
FileWriter excalationDataWriter = FileWriter.create(new File("/usr/local/syncData/excalationData" + date + k + ".txt"));
excalationDataWriter.writeLines(excalationData);
}
log.error("用户有指标没有数据的长度为:{}", userIdConcatMeasType.size());
//最后批量入库
batchInsertData(typeData);
}
/**
* 批量入库influxDB
*
* @param typeData 远程根据用户编号获取的数据 Map</表名/String, List<Map</属性名/String,/数值/String>>> typeData = new HashMap<>();
*/
private void batchInsertData(Map<String, List<String>> typeData) {
log.error("总计有{}条记录入库以20000作为基数分片插入influxdb", typeData.size());
List<String> sqlList = new ArrayList<>();
Set<String> tableNames = typeData.keySet();
String[] datas;
Map<String, String> tags;
Map<String, Object> fields;
Point point;
BatchPoints batchPoints;
for (String tableName : tableNames) {
List<String> data = typeData.get(tableName);
tableName = tableName.substring(tableName.lastIndexOf(StrPool.AT) + 1);
for (String datum : data) {
datas = datum.split(StrPool.COMMA);
//tag数据
tags = new HashMap<>();
tags.put("phasic_type", datas[0]);
tags.put("line_id", datas[1]);
tags.put("quality_flag", "0");
tags.put("value_type", "AVG");
String time = datas[2];
//tag数据删完后剩余均是filed数据,因filed属性名不固定无法指定获取直接循环
fields = new HashMap<>();
fields.put(datas[3], datas[4]);
point = influxDbUtils.pointBuilder(tableName, DateUtil.parse(time, DatePattern.NORM_DATETIME_FORMATTER).getTime(), TimeUnit.MILLISECONDS, tags, fields);
batchPoints = BatchPoints.database(influxDbUtils.getDbName()).retentionPolicy("").consistency(InfluxDB.ConsistencyLevel.ALL).build();
batchPoints.point(point);
sqlList.add(batchPoints.lineProtocol());
}
}
List<List<String>> subSqlList = ListUtils.partition(sqlList, 20000);
int count = 1;
for (List<String> sql : subSqlList) {
try {
influxDbUtils.batchInsert(influxDbUtils.getDbName(), "autogen", InfluxDB.ConsistencyLevel.ALL, TimeUnit.MILLISECONDS, sql);
} catch (Exception exception) {
log.error("数据批量入库异常,异常为:{}",exception.toString());
exception.printStackTrace();
}
log.error("已经入库{}条记录!", count * 20000);
count++;
}
log.error("当前批次所有数据,{}条均已入库!", sqlList.size());
}
}

View File

@@ -1,5 +1,5 @@
server:
port: 10288
port: 10299
tomcat:
max-swallow-size: 100MB #重要的一行修改tomcat的吞吐量
spring:
@@ -68,4 +68,14 @@ jibei:
client_id: bad079495dc111ee987b0a580a080620
client_secret: OxXIgFs9HHI05L3cOg8ogYoFRFs8sKlTJhVocyOprxoWSadcX0we2wffjyTUYGsK
grant_type: credentials
url: http://25.42.182.119:32001
url: http://25.42.182.119:32001
#线程池配置信息
microservice:
ename: async
threadPool:
corePoolSize: 12
maxPoolSize: 24
queueCapacity: 500
keepAliveSeconds: 60