代码冲突补充1

This commit is contained in:
hzj
2025-03-03 09:23:05 +08:00
parent b9fd8e9f95
commit 3d5fe4fcf4
4 changed files with 0 additions and 146 deletions

View File

@@ -11,7 +11,6 @@ import com.njcn.dataProcess.annotation.QueryBean;
import com.njcn.dataProcess.dto.DataHarmrateVDTO;
import com.njcn.dataProcess.param.LineCountEvaluateParam;
import com.njcn.dataProcess.pojo.dto.DataHarmDto;
import com.njcn.dataProcess.service.IDataHarmRateV;
import com.njcn.web.controller.BaseController;
import io.swagger.annotations.Api;
import io.swagger.annotations.ApiOperation;

View File

@@ -1,19 +0,0 @@
package com.njcn.dataProcess.service;
import com.njcn.dataProcess.param.LineCountEvaluateParam;
import com.njcn.dataProcess.pojo.dto.DataHarmDto;
import java.util.List;
/**
* @author xy
*/
public interface IDataHarmRateV {
/**
* 获取原始数据
* @param lineParam
* @return
*/
List<DataHarmDto> getRawData(LineCountEvaluateParam lineParam);
}

View File

@@ -1,98 +0,0 @@
package com.njcn.dataProcess.service.impl.influxdb;
import cn.hutool.core.collection.CollectionUtil;
import com.njcn.common.utils.HarmonicTimesUtil;
import com.njcn.dataProcess.dao.imapper.DataHarmRateVMapper;
import com.njcn.dataProcess.param.LineCountEvaluateParam;
import com.njcn.dataProcess.po.influx.DataHarmrateV;
import com.njcn.dataProcess.pojo.dto.DataHarmDto;
import com.njcn.dataProcess.service.IDataHarmRateV;
import com.njcn.influx.constant.InfluxDbSqlConstant;
import com.njcn.influx.query.InfluxQueryWrapper;
import lombok.RequiredArgsConstructor;
import org.springframework.beans.BeanUtils;
import org.springframework.stereotype.Service;
import java.time.ZoneId;
import java.time.format.DateTimeFormatter;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.stream.Collectors;
/**
* @author xy
*/
@Service("InfluxdbDataHarmRateVImpl")
@RequiredArgsConstructor
public class InfluxdbDataHarmRateVImpl implements IDataHarmRateV {
private final DateTimeFormatter DATE_TIME_FORMATTER = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss").withZone(ZoneId.systemDefault());
private final DataHarmRateVMapper dataHarmRateVMapper;
@Override
public List<DataHarmDto> getRawData(LineCountEvaluateParam lineParam) {
List<DataHarmDto> result = new ArrayList<>();
List<DataHarmrateV> list = getMinuteDataI(lineParam.getLineId(), lineParam.getStartTime(), lineParam.getEndTime(), lineParam.getAbnormalTime());
list.forEach(item->{
DataHarmDto dto = new DataHarmDto();
BeanUtils.copyProperties(item,dto);
dto.setMinTime(DATE_TIME_FORMATTER.format(item.getTime()));
result.add(dto);
});
return result;
}
/**
* 按监测点集合、时间条件获取dataI分钟数据
* timeMap参数来判断是否进行数据处理 timeMap为空则不进行数据处理
* 需要进行剔除异常数据时,这里会有三种情况判断
* 1.无异常数据,则直接返回集合;
* 2.异常数据和无异常数据参杂,剔除异常数据,只计算正常数据;
* 3.全是异常数据,则使用异常数据进行计算,但是日表中需要标记出来,此数据有异常
*/
public List<DataHarmrateV> getMinuteDataI(List<String> lineList, String startTime, String endTime, Map<String,List<String>> timeMap) {
List<DataHarmrateV> result = new ArrayList<>();
InfluxQueryWrapper influxQueryWrapper = new InfluxQueryWrapper(DataHarmrateV.class);
influxQueryWrapper.samePrefixAndSuffix(InfluxDbSqlConstant.V, "", HarmonicTimesUtil.harmonicTimesList(2, 50, 1));
influxQueryWrapper.regular(DataHarmrateV::getLineId, lineList)
.select(DataHarmrateV::getLineId)
.select(DataHarmrateV::getPhasicType)
.select(DataHarmrateV::getValueType)
.select(DataHarmrateV::getQualityFlag)
.between(DataHarmrateV::getTime, startTime, endTime)
.eq(DataHarmrateV::getQualityFlag,"0");
List<DataHarmrateV> list = dataHarmRateVMapper.selectByQueryWrapper(influxQueryWrapper);
Map<String,List<DataHarmrateV>> lineMap = list.stream().collect(Collectors.groupingBy(DataHarmrateV::getLineId));
//有异常数据
if (CollectionUtil.isNotEmpty(timeMap)) {
lineMap.forEach((k,v)->{
List<String> timeList = timeMap.get(k);
//有异常数据,当前监测点自身的异常数据
if (CollectionUtil.isNotEmpty(timeList)) {
List<DataHarmrateV> filterList = v.stream().filter(item -> !timeList.contains(DATE_TIME_FORMATTER.format(item.getTime()))).collect(Collectors.toList());
//1.过滤掉异常数据后还有正常数据,则用正常数据计算
if (CollectionUtil.isNotEmpty(filterList)) {
result.addAll(filterList);
}
//2.过滤掉异常数据后没有正常数据,则用所有异常数据计算,但是需要标记数据为异常的
else {
v.parallelStream().forEach(item -> item.setQualityFlag("1"));
result.addAll(v);
}
}
//没有异常数据,则使用原数据
else {
result.addAll(v);
}
});
}
//没有异常数据,则使用原数据
else {
result.addAll(list);
}
return result;
}
}

View File

@@ -1,28 +0,0 @@
package com.njcn.dataProcess.service.impl.relation;
import com.njcn.dataProcess.dao.relation.mapper.DataIRelationMapper;
import com.njcn.dataProcess.param.LineCountEvaluateParam;
import com.njcn.dataProcess.pojo.dto.DataHarmDto;
import com.njcn.dataProcess.service.IDataHarmRateV;
import lombok.RequiredArgsConstructor;
import org.springframework.stereotype.Service;
import javax.annotation.Resource;
import java.util.Collections;
import java.util.List;
/**
* @author xy
*/
@Service("RelationDataHarmRateVImpl")
@RequiredArgsConstructor
public class RelationDataHarmRateVImpl implements IDataHarmRateV {
@Resource
private DataIRelationMapper dataIRelationMapper;
@Override
public List<DataHarmDto> getRawData(LineCountEvaluateParam lineParam) {
return Collections.emptyList();
}
}