谐波责任量化java版本重构,需测试,单体已经测试没有问题

This commit is contained in:
2025-09-14 00:12:34 +08:00
parent 6815e1df4b
commit 74420e7107
12 changed files with 2452 additions and 2 deletions

View File

@@ -0,0 +1,179 @@
package com.njcn.advance.responsibility.analysis;
import com.njcn.advance.responsibility.constant.HarmonicConstants;
import com.njcn.advance.responsibility.utils.MathUtils;
import org.apache.commons.math3.linear.*;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* 典则相关分析类
* 实现典则相关系数的计算
*
* @author hongawen
* @version 1.0
*/
public class CanonicalCorrelationAnalysis {
private static final Logger logger = LoggerFactory.getLogger(CanonicalCorrelationAnalysis.class);
/**
* 计算典则相关系数
* 对应C代码中的TransCancor函数
*
* @param powerData 功率数据矩阵 [时间][节点]
* @param harmonicData 谐波数据向量
* @param windowSize 窗口大小
* @param nodeCount 节点数量
* @return 典则相关系数
*/
public static float computeCanonicalCorrelation(float[][] powerData, float[] harmonicData,
int windowSize, int nodeCount) {
try {
// 提取窗口数据
double[][] x = new double[windowSize][nodeCount];
double[] y = new double[windowSize];
for (int i = 0; i < windowSize; i++) {
for (int j = 0; j < nodeCount; j++) {
x[i][j] = powerData[i][j];
}
y[i] = harmonicData[i];
}
// 计算协方差矩阵 SXX
double[][] sxxMatrix = MathUtils.covarianceMatrix(x, windowSize, nodeCount);
// 计算协方差 SYY
double syyMatrix = MathUtils.covariance(y, y, windowSize);
if (Math.abs(syyMatrix) < HarmonicConstants.MIN_COVARIANCE) {
syyMatrix = HarmonicConstants.MIN_COVARIANCE;
}
// 计算协方差向量 SXY
double[] sxyVector = MathUtils.covarianceVector(x, y, windowSize, nodeCount);
// 使用Apache Commons Math进行矩阵运算
RealMatrix sxx = new Array2DRowRealMatrix(sxxMatrix);
RealVector sxy = new ArrayRealVector(sxyVector);
// 计算 SXX^(-1)
DecompositionSolver solver = new LUDecomposition(sxx).getSolver();
RealMatrix invSxx;
if (!solver.isNonSingular()) {
// 如果矩阵奇异,使用伪逆
logger.warn("SXX matrix is singular, using pseudo-inverse");
SingularValueDecomposition svd = new SingularValueDecomposition(sxx);
invSxx = svd.getSolver().getInverse();
} else {
invSxx = solver.getInverse();
}
// 计算 U = SXX^(-1) * SXY * (1/SYY) * SXY'
RealVector temp = invSxx.operate(sxy);
double scale = 1.0 / syyMatrix;
RealMatrix uMatrix = temp.outerProduct(sxy).scalarMultiply(scale);
// 计算特征值
EigenDecomposition eigenDecomposition = new EigenDecomposition(uMatrix);
double[] eigenvalues = eigenDecomposition.getRealEigenvalues();
// 找最大特征值
double maxEigenvalue = 0.0;
for (double eigenvalue : eigenvalues) {
maxEigenvalue = Math.max(maxEigenvalue, Math.abs(eigenvalue));
}
// 典则相关系数是最大特征值的平方根
double canonicalCorr = Math.sqrt(maxEigenvalue);
// 限制在[0,1]范围内
if (canonicalCorr > 1.0) {
canonicalCorr = 1.0;
}
return (float) canonicalCorr;
} catch (Exception e) {
logger.error("Error computing canonical correlation", e);
return 0.0f;
}
}
/**
* 滑动窗口计算典则相关系数序列
* 对应C代码中的SlideCanCor函数
*
* @param powerData 功率数据矩阵 [时间][节点]
* @param harmonicData 谐波数据向量
* @param windowSize 窗口大小
* @param nodeCount 节点数量
* @param dataLength 数据总长度
* @return 典则相关系数序列
*/
public static float[] slidingCanonicalCorrelation(float[][] powerData, float[] harmonicData,
int windowSize, int nodeCount, int dataLength) {
int slideLength = dataLength - windowSize;
if (slideLength <= 0) {
throw new IllegalArgumentException("Data length must be greater than window size");
}
float[] slideCanCor = new float[slideLength];
logger.info("Starting sliding canonical correlation analysis, slide length: {}", slideLength);
for (int i = 0; i < slideLength; i++) {
// 提取窗口数据
float[][] windowPower = new float[windowSize][nodeCount];
float[] windowHarmonic = new float[windowSize];
for (int j = 0; j < windowSize; j++) {
System.arraycopy(powerData[i + j], 0, windowPower[j], 0, nodeCount);
windowHarmonic[j] = harmonicData[i + j];
}
// 计算当前窗口的典则相关系数
slideCanCor[i] = computeCanonicalCorrelation(windowPower, windowHarmonic,
windowSize, nodeCount);
if (i % 10 == 0) {
logger.debug("Processed window {}/{}", i, slideLength);
}
}
logger.info("Sliding canonical correlation analysis completed");
return slideCanCor;
}
/**
* 计算包含/不包含背景的动态相关系数
* 对应C代码中的SlideCor函数
*
* @param powerData 功率数据(单个节点)
* @param harmonicData 谐波数据
* @param slideCanCor 滑动典则相关系数
* @param windowSize 窗口大小
* @return 动态相关系数序列
*/
public static float[] slidingCorrelation(float[] powerData, float[] harmonicData,
float[] slideCanCor, int windowSize) {
int slideLength = slideCanCor.length;
float[] slideCor = new float[slideLength];
for (int i = 0; i < slideLength; i++) {
float[] tempPower = new float[windowSize];
float[] tempHarmonic = new float[windowSize];
for (int j = 0; j < windowSize; j++) {
tempPower[j] = powerData[i + j];
tempHarmonic[j] = harmonicData[i + j] * slideCanCor[i];
}
slideCor[i] = MathUtils.pearsonCorrelation(tempHarmonic, tempPower, windowSize);
}
return slideCor;
}
}

View File

@@ -0,0 +1,424 @@
package com.njcn.advance.responsibility.calculator;
import com.njcn.advance.responsibility.analysis.CanonicalCorrelationAnalysis;
import com.njcn.advance.responsibility.constant.CalculationMode;
import com.njcn.advance.responsibility.constant.CalculationStatus;
import com.njcn.advance.responsibility.constant.HarmonicConstants;
import com.njcn.advance.responsibility.model.HarmonicData;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* 谐波责任计算主引擎
* 严格对应C代码中的harm_res系列函数
*
* @author hongawen
* @version 2.0 - 修复版本严格对照C代码实现
*/
public class HarmonicCalculationEngine {
private static final Logger logger = LoggerFactory.getLogger(HarmonicCalculationEngine.class);
// 对应C代码中的全局变量
private int P; // 节点数 p_node
private int TL; // 功率数据长度 p_num
private int LL; // 谐波数据长度 harm_num
private int JIANGE; // 数据间隔比例
private int width; // 窗口大小
private float XIANE; // 谐波门槛
/**
* 主计算入口
* 对应C代码中的harm_res函数
*
* @param data 谐波数据对象
* @return 计算是否成功
*/
public boolean calculate(HarmonicData data) {
logger.info("Starting harmonic calculation, mode: {}", data.getCalculationMode());
try {
if (data.getCalculationMode() == CalculationMode.FULL_CALCULATION) {
return fullCalculation(data);
} else {
return partialCalculation(data);
}
} catch (Exception e) {
logger.error("Calculation failed with exception: " + e.getMessage(), e);
e.printStackTrace();
data.setCalculationStatus(CalculationStatus.FAILED);
return false;
}
}
/**
* 完整计算模式
* 严格对应C代码中的harm_res_all函数
*
* @param data 谐波数据对象
* @return 计算是否成功
*/
private boolean fullCalculation(HarmonicData data) {
logger.info("Executing full calculation mode");
// 1. 数据初始化 - 对应 data_init_all()
if (!initializeFullCalculationData(data)) {
logger.error("Data initialization failed");
data.setCalculationStatus(CalculationStatus.FAILED);
return false;
}
// 2. 创建工作数组 - 对应C代码行536-540
float[][] a = new float[TL][P]; // 功率数据副本
float[] b = new float[LL]; // 谐波数据副本
float[] u = new float[TL]; // 对齐后的谐波数据
// 3. 复制数据 - 对应C代码行542-552
for (int i = 0; i < TL; i++) {
for (int j = 0; j < P; j++) {
a[i][j] = data.getPowerData()[i][j];
}
}
for (int i = 0; i < LL; i++) {
b[i] = data.getHarmonicData()[i];
}
// 4. 数据对齐处理 - 严格对应C代码行554-562
// 注意C代码是原地修改数组b
for (int i = 0; i < LL; i += JIANGE) {
float tempt = 0.0f;
for (int j = 0; j < JIANGE; j++) {
tempt += b[i + j];
}
b[i] = tempt / JIANGE; // 覆盖原位置
}
// 5. 构建Udata - 严格对应C代码行570-580
// 注意:使用 i*JIANGE 索引
for (int i = 0; i < TL; i++) {
u[i] = b[i * JIANGE]; // 关键:使用 i*JIANGE 索引
}
int slcorlength = TL - width;
// 6. 计算滑动典则相关系数 - 对应C代码行584
logger.info("Computing sliding canonical correlation");
float[] cancorrelation = CanonicalCorrelationAnalysis.slidingCanonicalCorrelation(
a, u, width, P, TL
);
// 7. 保存典则相关系数 - 对应C代码行592-601
float[] Core = new float[slcorlength];
float[] BjCore = new float[slcorlength];
for (int i = 0; i < slcorlength; i++) {
Core[i] = cancorrelation[i];
BjCore[i] = 1 - cancorrelation[i];
}
data.setCanonicalCorrelation(Core);
data.setBackgroundCanonicalCorr(BjCore);
// 8. 计算动态相关系数矩阵 - 对应C代码行605-635
logger.info("Computing correlation matrix");
float[][] simCor = new float[slcorlength][P];
// 对应C代码行618-632对每个节点计算动态相关系数
for (int i = 0; i < P; i++) {
// 提取第i个节点的功率数据
float[] xe = new float[TL];
for (int m = 0; m < TL; m++) {
xe[m] = a[m][i]; // 对应 Pdata.block(0, i, TL, 1)
}
// 计算该节点的滑动相关系数
float[] slidecor = CanonicalCorrelationAnalysis.slidingCorrelation(
xe, u, cancorrelation, width
);
// 存储结果
for (int j = 0; j < slcorlength; j++) {
simCor[j][i] = slidecor[j];
}
}
data.setCorrelationData(simCor);
// 9. 计算EK值 - 对应C代码行642-654
logger.info("Computing EK values");
float[][] EKdata = ResponsibilityCalculator.computeEK(
simCor, a, width, P, TL
);
// 10. 计算FK值 - 对应C代码行660-673
logger.info("Computing FK values");
float[][] FKdata = ResponsibilityCalculator.computeFK(
EKdata, width, P, TL
);
data.setFkData(FKdata);
// 11. 计算HK值 - 对应C代码行678-691
logger.info("Computing HK values");
float[][] HKdata = ResponsibilityCalculator.computeHK(
BjCore, EKdata, width, P, TL
);
data.setHkData(HKdata);
// 12. 设置结果数量 - 对应C代码行693
data.setResponsibilityDataCount(slcorlength);
// 13. 统计超限时段的责任 - 对应C代码行696-724
logger.info("Computing responsibility sums");
// 重要修正C代码的SumHK函数中虽然Udata长度是TL但是循环只遍历前slg(=TL-width)个元素
// 所以我们需要传入完整的u数组长度TL让sumResponsibility内部处理
// 对应C代码VectorXd Udata(TL); 以及 SumHK函数调用
// 统计HK责任包含背景- 对应C代码行698-710
// 注意传入完整的u数组TL长度而不是截取的数组
float[] sumHK = ResponsibilityCalculator.sumResponsibility(
HKdata, u, XIANE, width, P + 1, TL
);
data.setSumHKData(sumHK);
// 统计FK责任不包含背景- 对应C代码行712-724
// 同样传入完整的u数组和TL参数
float[] sumFK = ResponsibilityCalculator.sumResponsibility(
FKdata, u, XIANE, width, P, TL
);
data.setSumFKData(sumFK);
// 14. 标记计算成功 - 对应C代码行739
data.setCalculationStatus(CalculationStatus.CALCULATED);
logger.info("Full calculation completed successfully");
return true;
}
/**
* 初始化完整计算数据
* 对应C代码中的data_init_all函数
*/
private boolean initializeFullCalculationData(HarmonicData data) {
// 设置全局变量 - 对应C代码行478-483
P = data.getPowerNodeCount();
TL = data.getPowerCount();
LL = data.getHarmonicCount();
// 对应C代码第481行JIANGE = pq_buf.harm_num/pq_buf.p_num;
// 重要修正JIANGE应该是 谐波数量/功率点数,不是谐波数量/节点数
JIANGE = LL / TL; // 这个是正确的harm_num / p_num (其中p_num是功率点数)
width = data.getWindowSize();
XIANE = data.getHarmonicThreshold();
// 验证数据 - 对应C代码行485-504
if (JIANGE * TL != LL || JIANGE < 1) {
logger.error("Data length mismatch: JIANGE({}) * TL({}) != LL({})",
JIANGE, TL, LL);
return false;
}
if (width < HarmonicConstants.MIN_WIN_LEN || width > HarmonicConstants.MAX_WIN_LEN) {
logger.error("Invalid window size: {}", width);
return false;
}
if (TL < 2 * width) {
logger.error("Power data length {} is too short for window size {}", TL, width);
return false;
}
if (P > HarmonicConstants.MAX_P_NODE || TL > HarmonicConstants.MAX_P_NUM ||
LL > HarmonicConstants.MAX_HARM_NUM) {
logger.error("Data size exceeds limits");
return false;
}
return true;
}
/**
* 部分重算模式
* 对应C代码中的harm_res_part函数
*
* @param data 谐波数据对象
* @return 计算是否成功
*/
private boolean partialCalculation(HarmonicData data) {
logger.info("Executing partial calculation mode");
// 1. 数据初始化 - 对应 data_init_part()
if (!initializePartialCalculationData(data)) {
logger.error("Data initialization failed for partial calculation");
data.setCalculationStatus(CalculationStatus.FAILED);
return false;
}
// 2. 准备Udata - 对应C代码行816-818
// C代码VectorXd Udata(TL); 并从pq_buf.harm_data复制TL个元素
int res_num = data.getResponsibilityDataCount();
// 验证责任数据行数
if (res_num != TL - width) {
logger.warn("责任数据行数({})与期望值(TL-width={})不匹配", res_num, TL - width);
res_num = TL - width; // 使用正确的值
}
// 重要修正与C代码保持一致Udata长度应该是TL而不是res_num
// C代码VectorXd Udata(TL);
float[] Udata = new float[TL];
// 从harm_data复制TL个元素到Udata
// C代码for (int j = 0; j < TL; j++) Udata[j] = pq_buf.harm_data[j];
if (data.getHarmonicData().length < TL) {
logger.warn("谐波数据长度({})小于TL({}), 将补零",
data.getHarmonicData().length, TL);
System.arraycopy(data.getHarmonicData(), 0, Udata, 0, data.getHarmonicData().length);
// 剩余部分自动补零
} else {
System.arraycopy(data.getHarmonicData(), 0, Udata, 0, TL);
}
logger.debug("准备Udata完成: 长度={} (对应C代码TL), 责任数据行数={}", Udata.length, res_num);
// 3. 统计HK责任 - 对应C代码行806-830
logger.info("Recalculating HK responsibility sums");
// 对应C代码第808-814行创建新的HKdata矩阵只包含RES_NUM行
// C代码MatrixXd HKdata(RES_NUM, (P + 1));
// 添加数据验证
if (data.getHkData() == null || data.getHkData().length == 0) {
logger.error("HK数据为空或长度为0");
data.setCalculationStatus(CalculationStatus.FAILED);
return false;
}
// 重要C代码创建了新的RES_NUM行的HKdata从原始数据复制前RES_NUM行
// 对应C代码第808-814行
float[][] HKdataForCalc = new float[res_num][P + 1];
int copyRows = Math.min(res_num, data.getHkData().length);
logger.debug("创建用于计算的HK数据矩阵: {}x{}, 从原始数据复制{}行",
res_num, P + 1, copyRows);
for (int i = 0; i < copyRows; i++) {
for (int j = 0; j < P + 1; j++) {
if (j < data.getHkData()[i].length) {
HKdataForCalc[i][j] = data.getHkData()[i][j];
}
}
}
logger.debug("调用HK sumResponsibility参数: HKdata[{}x{}], Udata[{}], TL={}, width={}",
HKdataForCalc.length, HKdataForCalc.length > 0 ? HKdataForCalc[0].length : 0,
Udata.length, TL, width);
try {
// 对应C代码第819行arrHKsum = SumHK(HKdata, Udata, wdith, colK, TL);
float[] sumHK = ResponsibilityCalculator.sumResponsibility(
HKdataForCalc, // 使用新创建的RES_NUM行的HK数据
Udata, // 长度为TL的数组
XIANE,
width,
P + 1,
TL // 传入TL参数
);
data.setSumHKData(sumHK);
logger.debug("HK责任计算完成结果长度: {}", sumHK != null ? sumHK.length : "null");
} catch (Exception e) {
logger.error("HK责任计算失败: " + e.getMessage(), e);
throw e;
}
// 4. 统计FK责任 - 对应C代码行839-851
logger.info("Recalculating FK responsibility sums");
// 对应C代码虽然没有显式创建新的FKdata但逻辑相同
// 添加数据验证
if (data.getFkData() == null || data.getFkData().length == 0) {
logger.error("FK数据为空或长度为0");
data.setCalculationStatus(CalculationStatus.FAILED);
return false;
}
// 创建用于计算的FK数据矩阵RES_NUM行
float[][] FKdataForCalc = new float[res_num][P];
int copyRowsFK = Math.min(res_num, data.getFkData().length);
logger.debug("创建用于计算的FK数据矩阵: {}x{}, 从原始数据复制{}行",
res_num, P, copyRowsFK);
for (int i = 0; i < copyRowsFK; i++) {
for (int j = 0; j < P; j++) {
if (j < data.getFkData()[i].length) {
FKdataForCalc[i][j] = data.getFkData()[i][j];
}
}
}
logger.debug("调用FK sumResponsibility参数: FKdata[{}x{}], Udata[{}], TL={}, width={}",
FKdataForCalc.length, FKdataForCalc.length > 0 ? FKdataForCalc[0].length : 0,
Udata.length, TL, width);
try {
// 对应C代码第840行arrHKsum = SumHK(FKdata, Udata, wdith, colK, TL);
float[] sumFK = ResponsibilityCalculator.sumResponsibility(
FKdataForCalc, // 使用新创建的RES_NUM行的FK数据
Udata, // 使用相同的Udata(长度TL)
XIANE,
width,
P,
TL // 传入TL参数
);
data.setSumFKData(sumFK);
logger.debug("FK责任计算完成结果长度: {}", sumFK != null ? sumFK.length : "null");
} catch (Exception e) {
logger.error("FK责任计算失败: " + e.getMessage(), e);
throw e;
}
// 5. 标记计算成功 - 对应C代码行858
data.setCalculationStatus(CalculationStatus.CALCULATED);
logger.info("Partial calculation completed successfully");
return true;
}
/**
* 初始化部分计算数据
* 对应C代码中的data_init_part函数
*/
private boolean initializePartialCalculationData(HarmonicData data) {
// 设置变量 - 对应C代码行762-766
int RES_NUM = data.getResponsibilityDataCount();
P = data.getPowerNodeCount();
TL = data.getWindowSize() + RES_NUM;
width = data.getWindowSize();
XIANE = data.getHarmonicThreshold();
// 验证数据 - 对应C代码行756-778
if ((RES_NUM + width) != data.getHarmonicCount()) {
logger.error("Data length mismatch: res_num({}) + win({}) != harm_num({})",
RES_NUM, width, data.getHarmonicCount());
return false;
}
if (width < HarmonicConstants.MIN_WIN_LEN || width > HarmonicConstants.MAX_WIN_LEN) {
logger.error("Invalid window size: {}", width);
return false;
}
if (P > HarmonicConstants.MAX_P_NODE || TL > HarmonicConstants.MAX_P_NUM) {
logger.error("Data size exceeds limits");
return false;
}
// 验证FK和HK数据存在
if (data.getFkData() == null || data.getHkData() == null) {
logger.error("FK or HK data is null");
return false;
}
return true;
}
}

View File

@@ -0,0 +1,346 @@
package com.njcn.advance.responsibility.calculator;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* 责任指标计算类
* 计算谐波责任的各项指标
* 严格对应C代码实现
*
* @author hongawen
* @version 2.0 - 修复版本严格对照C代码实现
*/
public class ResponsibilityCalculator {
private static final Logger logger = LoggerFactory.getLogger(ResponsibilityCalculator.class);
/**
* 计算EK值动态责任指标
* 严格对应C代码中的DyEKCom函数行300-357
*
* @param correlationData 动态相关系数矩阵 [时间][节点]
* @param powerData 功率数据矩阵 [时间][节点]
* @param windowSize 窗口大小
* @param nodeCount 节点数量
* @param dataLength 数据长度
* @return EK值矩阵
*/
public static float[][] computeEK(float[][] correlationData, float[][] powerData,
int windowSize, int nodeCount, int dataLength) {
int slideLength = dataLength - windowSize;
float[][] ekData = new float[slideLength][nodeCount];
float[][] akData = new float[slideLength][nodeCount];
logger.info("Computing EK values, slide length: {}", slideLength);
// 计算AK值 - 对应C代码行307-319
for (int i = 0; i < slideLength; i++) {
float sumPower = 0;
// 计算功率总和 - 对应C代码行309-313
for (int j = 0; j < nodeCount; j++) {
sumPower += powerData[i][j]; // 注意这里用的是powerData[i][j]
}
// 计算AK值 - 对应C代码行314-318
for (int j = 0; j < nodeCount; j++) {
if (sumPower > 0) {
akData[i][j] = correlationData[i][j] * (powerData[i][j] / sumPower);
} else {
akData[i][j] = 0;
}
}
}
// 归一化处理得到EK值 - 对应C代码行320-342
for (int i = 0; i < slideLength; i++) {
// 重要C代码初始化为0而不是Float.MIN_VALUE/MAX_VALUE
// 对应C代码行322-323
float maxValue = 0;
float minValue = 0;
// 找最大最小值 - 对应C代码行322-334
for (int j = 0; j < nodeCount; j++) {
if (akData[i][j] > maxValue) {
maxValue = akData[i][j];
}
if (akData[i][j] < minValue) {
minValue = akData[i][j];
}
}
float range = maxValue - minValue;
// 归一化 - 对应C代码行338-341
for (int j = 0; j < nodeCount; j++) {
if (Math.abs(range) > 1e-10) {
ekData[i][j] = (akData[i][j] - minValue) / range;
} else {
ekData[i][j] = 0;
}
}
}
logger.info("EK computation completed");
return ekData;
}
/**
* 计算FK值不包含背景的责任指标
* 严格对应C代码中的DyFKCom函数行358-389
*
* @param ekData EK值矩阵
* @param windowSize 窗口大小
* @param nodeCount 节点数量
* @param dataLength 数据长度
* @return FK值矩阵
*/
public static float[][] computeFK(float[][] ekData, int windowSize,
int nodeCount, int dataLength) {
int slideLength = dataLength - windowSize;
float[][] fkData = new float[slideLength][nodeCount];
logger.info("Computing FK values");
// 对应C代码行364-376
for (int i = 0; i < slideLength; i++) {
float sumEK = 0;
// 计算EK总和 - 对应C代码行366-370
for (int j = 0; j < nodeCount; j++) {
sumEK += ekData[i][j];
}
// 计算FK值归一化- 对应C代码行372-375
for (int j = 0; j < nodeCount; j++) {
if (sumEK > 0) {
fkData[i][j] = ekData[i][j] / sumEK;
} else {
fkData[i][j] = 0;
}
}
}
logger.info("FK computation completed");
return fkData;
}
/**
* 计算HK值包含背景的责任指标
* 严格对应C代码中的DyHKCom函数行390-429
*
* @param backgroundCanCor 背景典则相关系数1-典则相关系数)
* @param ekData EK值矩阵
* @param windowSize 窗口大小
* @param nodeCount 节点数量
* @param dataLength 数据长度
* @return HK值矩阵
*/
public static float[][] computeHK(float[] backgroundCanCor, float[][] ekData,
int windowSize, int nodeCount, int dataLength) {
int slideLength = dataLength - windowSize;
float[][] hkData = new float[slideLength][nodeCount + 1];
float[][] newEK = new float[slideLength][nodeCount + 1];
logger.info("Computing HK values");
// 构建包含背景的EK矩阵 - 对应C代码行396-403
for (int i = 0; i < slideLength; i++) {
// 复制原有EK值
for (int j = 0; j < nodeCount; j++) {
newEK[i][j] = ekData[i][j];
}
// 添加背景值
newEK[i][nodeCount] = backgroundCanCor[i];
}
// 计算HK值 - 对应C代码行405-416
for (int i = 0; i < slideLength; i++) {
float sumEK = 0;
// 计算总和 - 对应C代码行407-411
for (int j = 0; j < nodeCount + 1; j++) {
sumEK += newEK[i][j];
}
// 归一化得到HK值 - 对应C代码行412-415
for (int j = 0; j < nodeCount + 1; j++) {
if (sumEK > 0) {
hkData[i][j] = newEK[i][j] / sumEK;
} else {
hkData[i][j] = 0;
}
}
}
logger.info("HK computation completed");
return hkData;
}
/**
* 计算超限时段的责任总和
* 严格对应C代码中的SumHK函数行431-461
*
* @param responsibilityData 责任数据矩阵FK或HK[时间][节点]
* @param harmonicData 谐波数据Udata - 长度为TL
* @param threshold 谐波门槛XIANE
* @param windowSize 窗口大小
* @param columnCount 列数(节点数或节点数+1
* @param tl_num 对应C代码的TL参数总数据点数
* @return 各节点的责任总和百分比
*/
public static float[] sumResponsibility(float[][] responsibilityData, float[] harmonicData,
float threshold, int windowSize, int columnCount, int tl_num) {
// 对应C代码int slg = tl_num - width;
int slideLength = tl_num - windowSize; // 使用传入的tl_num计算而不是从responsibilityData.length推断
float[] sumData = new float[columnCount]; // 对应C代码中的 arrHKsum
double[] HKSum = new double[columnCount]; // 对应C代码中的 VectorXd HKSum - 使用double精度
int exceedCount = 0; // 对应C代码中的 coutt
logger.debug("sumResponsibility参数: threshold={}, windowSize={}, columnCount={}, tl_num={}, slideLength={}",
threshold, windowSize, columnCount, tl_num, slideLength);
// 数据验证
if (harmonicData == null) {
logger.error("错误: harmonicData为null!");
throw new NullPointerException("harmonicData不能为null");
}
if (responsibilityData == null) {
logger.error("错误: responsibilityData为null!");
throw new NullPointerException("responsibilityData不能为null");
}
// 关键验证:检查数组长度是否充足
// C代码中Udata长度是TL循环遍历slg=TL-width个元素
logger.debug("数据验证: slideLength={}, harmonicData.length={}, responsibilityData.length={}",
slideLength, harmonicData.length, responsibilityData.length);
if (harmonicData.length < slideLength) {
logger.error("!!!谐波数据长度不足!!!");
logger.error("需要访问harmonicData[0]到harmonicData[{}], 但数组长度只有{}",
slideLength - 1, harmonicData.length);
throw new IllegalArgumentException(
String.format("谐波数据长度不足: 需要%d, 实际%d", slideLength, harmonicData.length));
}
if (responsibilityData.length < slideLength) {
logger.error("!!!责任数据行数不足!!!");
logger.error("需要访问responsibilityData[0]到responsibilityData[{}], 但数组长度只有{}",
slideLength - 1, responsibilityData.length);
throw new IllegalArgumentException(
String.format("责任数据行数不足: 需要%d, 实际%d", slideLength, responsibilityData.length));
}
// 统计超限时段的责任 - 对应C代码行437-449
// 重要C代码中有一个设计缺陷coutt在每个j循环中被重置
// 但最后计算百分比时使用的是最后一次j循环的coutt值
// 为了严格保持一致,我们也要复现这个逻辑
for (int j = 0; j < columnCount; j++) {
HKSum[j] = 0;
exceedCount = 0; // 对应C代码行440: coutt = 0;
for (int i = 0; i < slideLength; i++) {
// 添加越界检查
if (i >= harmonicData.length) {
logger.error("!!!数组越界!!! 尝试访问harmonicData[{}], 但数组长度只有{}",
i, harmonicData.length);
logger.error("发生在: j={}, i={}", j, i);
throw new ArrayIndexOutOfBoundsException(
String.format("访问harmonicData[%d]越界, 数组长度=%d", i, harmonicData.length));
}
// 对应C代码行443-447
if (harmonicData[i] > threshold) {
HKSum[j] += responsibilityData[i][j]; // 对应C代码行445
exceedCount++; // 对应C代码行446
}
}
}
// 注意这里exceedCount保留的是最后一列j=columnCount-1的超限次数
// 这与C代码的行为一致
logger.debug("最终exceedCount={} (来自最后一列的计算)", exceedCount);
// 计算平均责任百分比 - 对应C代码行453-459
for (int i = 0; i < columnCount; i++) {
sumData[i] = 0; // 对应C代码行454
}
for (int i = 0; i < columnCount; i++) {
if (exceedCount > 0) {
// 对应C代码行458: arrHKsum[i] = 100 * (HKSum(i)/coutt);
// 使用double进行计算然后转换为float
sumData[i] = (float)(100.0 * (HKSum[i] / (double)exceedCount));
}
}
logger.info("Exceeded count: {}, average responsibilities calculated", exceedCount);
return sumData;
}
/**
* 计算超限时段的责任总和(兼容版本)
* 为了向后兼容保留不带tl_num参数的版本
*
* @param responsibilityData 责任数据矩阵FK或HK[时间][节点]
* @param harmonicData 谐波数据Udata
* @param threshold 谐波门槛XIANE
* @param windowSize 窗口大小
* @param columnCount 列数(节点数或节点数+1
* @return 各节点的责任总和百分比
*/
public static float[] sumResponsibility(float[][] responsibilityData, float[] harmonicData,
float threshold, int windowSize, int columnCount) {
// 如果没有提供tl_num从数据推断
int tl_num = responsibilityData.length + windowSize;
return sumResponsibility(responsibilityData, harmonicData, threshold, windowSize, columnCount, tl_num);
}
/**
* 计算所有节点的动态相关系数矩阵
* 这个函数在主引擎中已经内联实现,这里保留作为辅助方法
*
* @param powerData 功率数据矩阵
* @param harmonicData 谐波数据
* @param canonicalCorr 典则相关系数序列
* @param windowSize 窗口大小
* @param nodeCount 节点数量
* @return 动态相关系数矩阵
*/
public static float[][] computeCorrelationMatrix(float[][] powerData, float[] harmonicData,
float[] canonicalCorr, int windowSize,
int nodeCount) {
int slideLength = canonicalCorr.length;
float[][] correlationMatrix = new float[slideLength][nodeCount];
logger.info("Computing correlation matrix for all nodes");
for (int nodeIdx = 0; nodeIdx < nodeCount; nodeIdx++) {
// 提取单个节点的功率数据
float[] nodePower = new float[powerData.length];
for (int i = 0; i < powerData.length; i++) {
nodePower[i] = powerData[i][nodeIdx];
}
// 计算该节点的动态相关系数
float[] nodeCorr = com.njcn.advance.responsibility.analysis.CanonicalCorrelationAnalysis
.slidingCorrelation(nodePower, harmonicData, canonicalCorr, windowSize);
// 存储结果
for (int i = 0; i < slideLength; i++) {
correlationMatrix[i][nodeIdx] = nodeCorr[i];
}
}
logger.info("Correlation matrix computation completed");
return correlationMatrix;
}
}

View File

@@ -0,0 +1,46 @@
package com.njcn.advance.responsibility.constant;
/**
* 计算模式枚举
*
* @author hongawen
* @version 1.0
*/
public enum CalculationMode {
/**
* 完整计算模式
* 使用电压和功率数据计算相关系数和责任
*/
FULL_CALCULATION(0, "完整计算模式"),
/**
* 部分重算模式
* 使用已有的动态相关系数计算责任
*/
PARTIAL_RECALCULATION(1, "部分重算模式");
private final int code;
private final String description;
CalculationMode(int code, String description) {
this.code = code;
this.description = description;
}
public int getCode() {
return code;
}
public String getDescription() {
return description;
}
public static CalculationMode fromCode(int code) {
for (CalculationMode mode : values()) {
if (mode.code == code) {
return mode;
}
}
throw new IllegalArgumentException("Invalid calculation mode code: " + code);
}
}

View File

@@ -0,0 +1,49 @@
package com.njcn.advance.responsibility.constant;
/**
* 计算状态枚举
*
* @author hongawen
* @version 1.0
*/
public enum CalculationStatus {
/**
* 未计算
*/
NOT_CALCULATED(0, "未计算"),
/**
* 计算完成
*/
CALCULATED(1, "计算完成"),
/**
* 计算失败
*/
FAILED(-1, "计算失败");
private final int code;
private final String description;
CalculationStatus(int code, String description) {
this.code = code;
this.description = description;
}
public int getCode() {
return code;
}
public String getDescription() {
return description;
}
public static CalculationStatus fromCode(int code) {
for (CalculationStatus status : values()) {
if (status.code == code) {
return status;
}
}
return NOT_CALCULATED;
}
}

View File

@@ -0,0 +1,60 @@
package com.njcn.advance.responsibility.constant;
/**
* 谐波责任量化系统常量定义
*
* @author hongawen
* @version 1.0
*/
public final class HarmonicConstants {
private HarmonicConstants() {
// 防止实例化
}
/**
* 最大谐波数据个数 (1440*100)
* 按一分钟间隔100天处理
*/
public static final int MAX_HARM_NUM = 144000;
/**
* 最大功率数据个数 (96*100)
* 按15分钟间隔100天处理
*/
public static final int MAX_P_NUM = 9600;
/**
* 最大功率节点个数
* 按200个限制
*/
public static final int MAX_P_NODE = 200;
/**
* 最大数据窗长度 (96*10)
* 按15分钟算10天
*/
public static final int MAX_WIN_LEN = 960;
/**
* 最小数据窗长度
* 按15分钟算一小时
*/
public static final int MIN_WIN_LEN = 4;
/**
* 默认数据窗大小
* 一天的数据量15分钟间隔
*/
public static final int DEFAULT_WINDOW_SIZE = 96;
/**
* 数值计算精度阈值
*/
public static final double EPSILON = 1e-10;
/**
* 协方差计算最小值(避免除零)
*/
public static final double MIN_COVARIANCE = 1e-5;
}

View File

@@ -0,0 +1,286 @@
package com.njcn.advance.responsibility.model;
import com.njcn.advance.responsibility.constant.CalculationMode;
import com.njcn.advance.responsibility.constant.CalculationStatus;
import com.njcn.advance.responsibility.constant.HarmonicConstants;
/**
* 谐波数据结构类
* 对应C语言中的harm_data_struct结构体
*
* @author hongawen
* @version 1.0
*/
public class HarmonicData {
// 输入参数
private CalculationMode calculationMode; // 计算标志
private int harmonicCount; // 谐波数据个数
private int powerCount; // 功率数据个数
private int powerNodeCount; // 功率负荷节点数
private int windowSize; // 数据窗大小
private int responsibilityDataCount; // 代入的责任数据个数
private float harmonicThreshold; // 谐波电压门槛
// 数据数组
private float[] harmonicData; // 谐波数据序列
private float[][] powerData; // 功率数据序列
// 输入输出数据
private float[][] correlationData; // 动态相关系数数据序列
private float[][] fkData; // 不包含背景动态谐波责任数据序列
private float[][] hkData; // 包含背景动态谐波责任数据序列
private float[] canonicalCorrelation; // 典则相关系数
private float[] backgroundCanonicalCorr; // 包含背景典则相关系数
// 输出结果
private CalculationStatus calculationStatus; // 计算状态
private float[] sumFKData; // 不包含背景谐波责任
private float[] sumHKData; // 包含背景谐波责任
/**
* 默认构造函数
*/
public HarmonicData() {
this.calculationMode = CalculationMode.FULL_CALCULATION;
this.calculationStatus = CalculationStatus.NOT_CALCULATED;
this.windowSize = HarmonicConstants.DEFAULT_WINDOW_SIZE;
}
/**
* Builder模式构造器
*/
public static class Builder {
private HarmonicData data = new HarmonicData();
public Builder calculationMode(CalculationMode mode) {
data.calculationMode = mode;
return this;
}
public Builder harmonicCount(int count) {
data.harmonicCount = count;
return this;
}
public Builder powerCount(int count) {
data.powerCount = count;
return this;
}
public Builder powerNodeCount(int count) {
data.powerNodeCount = count;
return this;
}
public Builder windowSize(int size) {
data.windowSize = size;
return this;
}
public Builder harmonicThreshold(float threshold) {
data.harmonicThreshold = threshold;
return this;
}
public Builder harmonicData(float[] data) {
this.data.harmonicData = data;
return this;
}
public Builder powerData(float[][] data) {
this.data.powerData = data;
return this;
}
public HarmonicData build() {
// 验证数据
validateData();
// 初始化数组
initializeArrays();
return data;
}
private void validateData() {
if (data.harmonicCount <= 0 || data.harmonicCount > HarmonicConstants.MAX_HARM_NUM) {
throw new IllegalArgumentException("Invalid harmonic count: " + data.harmonicCount);
}
if (data.powerCount <= 0 || data.powerCount > HarmonicConstants.MAX_P_NUM) {
throw new IllegalArgumentException("Invalid power count: " + data.powerCount);
}
if (data.powerNodeCount <= 0 || data.powerNodeCount > HarmonicConstants.MAX_P_NODE) {
throw new IllegalArgumentException("Invalid power node count: " + data.powerNodeCount);
}
if (data.windowSize < HarmonicConstants.MIN_WIN_LEN ||
data.windowSize > HarmonicConstants.MAX_WIN_LEN) {
throw new IllegalArgumentException("Invalid window size: " + data.windowSize);
}
// 验证数据对齐
if (data.calculationMode == CalculationMode.FULL_CALCULATION) {
int ratio = data.harmonicCount / data.powerCount;
if (ratio * data.powerCount != data.harmonicCount || ratio < 1) {
throw new IllegalArgumentException("Harmonic data count must be integer multiple of power data count");
}
}
}
private void initializeArrays() {
if (data.harmonicData == null) {
data.harmonicData = new float[data.harmonicCount];
}
if (data.powerData == null) {
data.powerData = new float[data.powerCount][data.powerNodeCount];
}
int resultCount = data.powerCount - data.windowSize;
if (resultCount > 0) {
data.correlationData = new float[resultCount][data.powerNodeCount];
data.fkData = new float[resultCount][data.powerNodeCount];
data.hkData = new float[resultCount][data.powerNodeCount + 1];
data.canonicalCorrelation = new float[resultCount];
data.backgroundCanonicalCorr = new float[resultCount];
}
data.sumFKData = new float[data.powerNodeCount];
data.sumHKData = new float[data.powerNodeCount + 1];
}
}
// Getters and Setters
public CalculationMode getCalculationMode() {
return calculationMode;
}
public void setCalculationMode(CalculationMode calculationMode) {
this.calculationMode = calculationMode;
}
public int getHarmonicCount() {
return harmonicCount;
}
public void setHarmonicCount(int harmonicCount) {
this.harmonicCount = harmonicCount;
}
public int getPowerCount() {
return powerCount;
}
public void setPowerCount(int powerCount) {
this.powerCount = powerCount;
}
public int getPowerNodeCount() {
return powerNodeCount;
}
public void setPowerNodeCount(int powerNodeCount) {
this.powerNodeCount = powerNodeCount;
}
public int getWindowSize() {
return windowSize;
}
public void setWindowSize(int windowSize) {
this.windowSize = windowSize;
}
public int getResponsibilityDataCount() {
return responsibilityDataCount;
}
public void setResponsibilityDataCount(int responsibilityDataCount) {
this.responsibilityDataCount = responsibilityDataCount;
}
public float getHarmonicThreshold() {
return harmonicThreshold;
}
public void setHarmonicThreshold(float harmonicThreshold) {
this.harmonicThreshold = harmonicThreshold;
}
public float[] getHarmonicData() {
return harmonicData;
}
public void setHarmonicData(float[] harmonicData) {
this.harmonicData = harmonicData;
}
public float[][] getPowerData() {
return powerData;
}
public void setPowerData(float[][] powerData) {
this.powerData = powerData;
}
public float[][] getCorrelationData() {
return correlationData;
}
public void setCorrelationData(float[][] correlationData) {
this.correlationData = correlationData;
}
public float[][] getFkData() {
return fkData;
}
public void setFkData(float[][] fkData) {
this.fkData = fkData;
}
public float[][] getHkData() {
return hkData;
}
public void setHkData(float[][] hkData) {
this.hkData = hkData;
}
public float[] getCanonicalCorrelation() {
return canonicalCorrelation;
}
public void setCanonicalCorrelation(float[] canonicalCorrelation) {
this.canonicalCorrelation = canonicalCorrelation;
}
public float[] getBackgroundCanonicalCorr() {
return backgroundCanonicalCorr;
}
public void setBackgroundCanonicalCorr(float[] backgroundCanonicalCorr) {
this.backgroundCanonicalCorr = backgroundCanonicalCorr;
}
public CalculationStatus getCalculationStatus() {
return calculationStatus;
}
public void setCalculationStatus(CalculationStatus calculationStatus) {
this.calculationStatus = calculationStatus;
}
public float[] getSumFKData() {
return sumFKData;
}
public void setSumFKData(float[] sumFKData) {
this.sumFKData = sumFKData;
}
public float[] getSumHKData() {
return sumHKData;
}
public void setSumHKData(float[] sumHKData) {
this.sumHKData = sumHKData;
}
}

View File

@@ -0,0 +1,61 @@
package com.njcn.advance.responsibility.service;
import com.njcn.advance.responsibility.model.HarmonicData;
/**
* 谐波责任计算服务接口
*
* @author hongawen
* @version 1.0
*/
public interface IHarmonicResponsibilityService {
/**
* 执行谐波责任计算
*
* @param data 输入的谐波数据
* @return 计算是否成功
*/
boolean calculate(HarmonicData data);
/**
* 执行完整计算
*
* @param harmonicData 谐波数据数组
* @param powerData 功率数据矩阵
* @param harmonicCount 谐波数据个数
* @param powerCount 功率数据个数
* @param nodeCount 节点数量
* @param windowSize 窗口大小
* @param threshold 谐波门槛
* @return 计算结果
*/
HarmonicData fullCalculation(float[] harmonicData, float[][] powerData,
int harmonicCount, int powerCount, int nodeCount,
int windowSize, float threshold);
/**
* 执行部分重算
*
* @param harmonicData 谐波数据数组
* @param fkData FK数据矩阵
* @param hkData HK数据矩阵
* @param harmonicCount 谐波数据个数
* @param nodeCount 节点数量
* @param windowSize 窗口大小
* @param responsibilityCount 责任数据个数
* @param threshold 谐波门槛
* @return 计算结果
*/
HarmonicData partialCalculation(float[] harmonicData, float[][] fkData, float[][] hkData,
int harmonicCount, int nodeCount, int windowSize,
int responsibilityCount, float threshold);
/**
* 验证输入数据的有效性
*
* @param data 待验证的数据
* @return 验证结果消息null表示验证通过
*/
String validateData(HarmonicData data);
}

View File

@@ -0,0 +1,162 @@
package com.njcn.advance.responsibility.service.impl;
import com.njcn.advance.responsibility.calculator.HarmonicCalculationEngine;
import com.njcn.advance.responsibility.constant.CalculationMode;
import com.njcn.advance.responsibility.constant.HarmonicConstants;
import com.njcn.advance.responsibility.model.HarmonicData;
import com.njcn.advance.responsibility.service.IHarmonicResponsibilityService;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.stereotype.Service;
/**
* 谐波责任计算服务实现类
*
* @author hongawen
* @version 1.0
*/
@Service
public class HarmonicResponsibilityServiceImpl implements IHarmonicResponsibilityService {
private static final Logger logger = LoggerFactory.getLogger(HarmonicResponsibilityServiceImpl.class);
private final HarmonicCalculationEngine engine;
public HarmonicResponsibilityServiceImpl() {
this.engine = new HarmonicCalculationEngine();
}
@Override
public boolean calculate(HarmonicData data) {
if (data == null) {
logger.error("Input data is null");
return false;
}
String validationError = validateData(data);
if (validationError != null) {
logger.error("Data validation failed: {}", validationError);
return false;
}
long startTime = System.currentTimeMillis();
boolean result = engine.calculate(data);
long endTime = System.currentTimeMillis();
logger.info("Calculation completed in {} ms, result: {}", (endTime - startTime), result);
return result;
}
@Override
public HarmonicData fullCalculation(float[] harmonicData, float[][] powerData,
int harmonicCount, int powerCount, int nodeCount,
int windowSize, float threshold) {
logger.info("Starting full calculation with harmonicCount={}, powerCount={}, nodeCount={}, windowSize={}",
harmonicCount, powerCount, nodeCount, windowSize);
HarmonicData data = new HarmonicData.Builder()
.calculationMode(CalculationMode.FULL_CALCULATION)
.harmonicCount(harmonicCount)
.powerCount(powerCount)
.powerNodeCount(nodeCount)
.windowSize(windowSize)
.harmonicThreshold(threshold)
.harmonicData(harmonicData)
.powerData(powerData)
.build();
calculate(data);
return data;
}
@Override
public HarmonicData partialCalculation(float[] harmonicData, float[][] fkData, float[][] hkData,
int harmonicCount, int nodeCount, int windowSize,
int responsibilityCount, float threshold) {
logger.info("Starting partial calculation with harmonicCount={}, nodeCount={}, windowSize={}, responsibilityCount={}",
harmonicCount, nodeCount, windowSize, responsibilityCount);
HarmonicData data = new HarmonicData();
data.setCalculationMode(CalculationMode.PARTIAL_RECALCULATION);
data.setHarmonicCount(harmonicCount);
data.setPowerNodeCount(nodeCount);
data.setWindowSize(windowSize);
data.setResponsibilityDataCount(responsibilityCount);
data.setHarmonicThreshold(threshold);
data.setHarmonicData(harmonicData);
data.setFkData(fkData);
data.setHkData(hkData);
// 初始化输出数组
data.setSumFKData(new float[nodeCount]);
data.setSumHKData(new float[nodeCount + 1]);
calculate(data);
return data;
}
@Override
public String validateData(HarmonicData data) {
if (data == null) {
return "Data object is null";
}
// 验证基本参数
if (data.getHarmonicCount() <= 0 || data.getHarmonicCount() > HarmonicConstants.MAX_HARM_NUM) {
return String.format("Invalid harmonic count: %d (should be 1-%d)",
data.getHarmonicCount(), HarmonicConstants.MAX_HARM_NUM);
}
if (data.getCalculationMode() == CalculationMode.FULL_CALCULATION) {
// 完整计算模式验证
if (data.getPowerCount() <= 0 || data.getPowerCount() > HarmonicConstants.MAX_P_NUM) {
return String.format("Invalid power count: %d (should be 1-%d)",
data.getPowerCount(), HarmonicConstants.MAX_P_NUM);
}
if (data.getPowerNodeCount() <= 0 || data.getPowerNodeCount() > HarmonicConstants.MAX_P_NODE) {
return String.format("Invalid power node count: %d (should be 1-%d)",
data.getPowerNodeCount(), HarmonicConstants.MAX_P_NODE);
}
// 验证数据对齐
int ratio = data.getHarmonicCount() / data.getPowerCount();
if (ratio * data.getPowerCount() != data.getHarmonicCount()) {
return String.format("Harmonic count %d is not aligned with power count %d",
data.getHarmonicCount(), data.getPowerCount());
}
// 验证数据数组
if (data.getHarmonicData() == null || data.getHarmonicData().length < data.getHarmonicCount()) {
return "Harmonic data array is null or insufficient";
}
if (data.getPowerData() == null || data.getPowerData().length < data.getPowerCount()) {
return "Power data array is null or insufficient";
}
} else if (data.getCalculationMode() == CalculationMode.PARTIAL_RECALCULATION) {
// 部分计算模式验证
if (data.getResponsibilityDataCount() + data.getWindowSize() != data.getHarmonicCount()) {
return String.format("Data length mismatch: resNum(%d) + winSize(%d) != harmCount(%d)",
data.getResponsibilityDataCount(), data.getWindowSize(), data.getHarmonicCount());
}
if (data.getFkData() == null || data.getHkData() == null) {
return "FK or HK data is null for partial calculation";
}
}
// 验证窗口大小
if (data.getWindowSize() < HarmonicConstants.MIN_WIN_LEN ||
data.getWindowSize() > HarmonicConstants.MAX_WIN_LEN) {
return String.format("Invalid window size: %d (should be %d-%d)",
data.getWindowSize(), HarmonicConstants.MIN_WIN_LEN, HarmonicConstants.MAX_WIN_LEN);
}
return null; // 验证通过
}
}

View File

@@ -0,0 +1,314 @@
package com.njcn.advance.responsibility.utils;
import com.njcn.advance.responsibility.constant.HarmonicConstants;
import org.apache.commons.math3.linear.*;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* 数学工具类
* 提供基础数学计算功能
*
* @author hongawen
* @version 1.0
*/
public class MathUtils {
private static final Logger logger = LoggerFactory.getLogger(MathUtils.class);
/**
* 计算协方差
*
* @param x 数据序列1
* @param y 数据序列2
* @param width 数据窗宽度
* @return 协方差值
*/
public static double covariance(double[] x, double[] y, int width) {
if (x == null || y == null || width <= 0) {
throw new IllegalArgumentException("Invalid input parameters for covariance calculation");
}
if (x.length < width || y.length < width) {
throw new IllegalArgumentException("Data length is less than window width");
}
double meanX = 0.0;
double meanY = 0.0;
// 计算均值
for (int i = 0; i < width; i++) {
meanX += x[i];
meanY += y[i];
}
meanX /= width;
meanY /= width;
// 计算协方差
double cov = 0.0;
for (int i = 0; i < width; i++) {
cov += (x[i] - meanX) * (y[i] - meanY);
}
return cov / (width - 1);
}
/**
* 计算协方差float版本
*/
public static float covariance(float[] x, float[] y, int width) {
double[] dx = new double[x.length];
double[] dy = new double[y.length];
for (int i = 0; i < x.length; i++) dx[i] = x[i];
for (int i = 0; i < y.length; i++) dy[i] = y[i];
return (float) covariance(dx, dy, width);
}
/**
* 计算Pearson相关系数
*
* @param x 数据序列1
* @param y 数据序列2
* @param count 数据长度
* @return Pearson相关系数
*/
public static double pearsonCorrelation(double[] x, double[] y, int count) {
if (x == null || y == null || count <= 0) {
throw new IllegalArgumentException("Invalid input parameters for Pearson correlation");
}
double meanX = 0.0;
double meanY = 0.0;
// 计算均值
for (int i = 0; i < count; i++) {
meanX += x[i];
meanY += y[i];
}
meanX /= count;
meanY /= count;
// 计算相关系数的各个部分
double numerator = 0.0;
double denomX = 0.0;
double denomY = 0.0;
for (int i = 0; i < count; i++) {
double dx = x[i] - meanX;
double dy = y[i] - meanY;
numerator += dx * dy;
denomX += dx * dx;
denomY += dy * dy;
}
double denominator = Math.sqrt(denomX * denomY);
if (Math.abs(denominator) < HarmonicConstants.EPSILON) {
logger.warn("Denominator is too small in Pearson correlation calculation");
return 0.0;
}
return numerator / denominator;
}
/**
* 计算Pearson相关系数float版本
*/
public static float pearsonCorrelation(float[] x, float[] y, int count) {
double[] dx = new double[count];
double[] dy = new double[count];
for (int i = 0; i < count; i++) {
dx[i] = x[i];
dy[i] = y[i];
}
return (float) pearsonCorrelation(dx, dy, count);
}
/**
* 计算协方差矩阵SXX
*
* @param data 数据矩阵 [时间][节点]
* @param width 窗口宽度
* @param nodeCount 节点数
* @return 协方差矩阵
*/
public static double[][] covarianceMatrix(double[][] data, int width, int nodeCount) {
double[][] covMatrix = new double[nodeCount][nodeCount];
for (int i = 0; i < nodeCount; i++) {
for (int j = 0; j < nodeCount; j++) {
double[] col1 = new double[width];
double[] col2 = new double[width];
for (int k = 0; k < width; k++) {
col1[k] = data[k][i];
col2[k] = data[k][j];
}
covMatrix[i][j] = covariance(col1, col2, width);
}
}
return covMatrix;
}
/**
* 计算协方差矩阵float版本
*/
public static float[][] covarianceMatrix(float[][] data, int width, int nodeCount) {
float[][] covMatrix = new float[nodeCount][nodeCount];
for (int i = 0; i < nodeCount; i++) {
for (int j = 0; j < nodeCount; j++) {
float[] col1 = new float[width];
float[] col2 = new float[width];
for (int k = 0; k < width; k++) {
col1[k] = data[k][i];
col2[k] = data[k][j];
}
covMatrix[i][j] = covariance(col1, col2, width);
}
}
return covMatrix;
}
/**
* 计算协方差向量SXY
*
* @param data 数据矩阵 [时间][节点]
* @param y 目标向量
* @param width 窗口宽度
* @param nodeCount 节点数
* @return 协方差向量
*/
public static double[] covarianceVector(double[][] data, double[] y, int width, int nodeCount) {
double[] covVector = new double[nodeCount];
for (int i = 0; i < nodeCount; i++) {
double[] col = new double[width];
for (int k = 0; k < width; k++) {
col[k] = data[k][i];
}
covVector[i] = covariance(col, y, width);
}
return covVector;
}
/**
* 计算协方差向量float版本
*/
public static float[] covarianceVector(float[][] data, float[] y, int width, int nodeCount) {
float[] covVector = new float[nodeCount];
for (int i = 0; i < nodeCount; i++) {
float[] col = new float[width];
for (int k = 0; k < width; k++) {
col[k] = data[k][i];
}
covVector[i] = covariance(col, y, width);
}
return covVector;
}
/**
* 矩阵求逆
* 使用Apache Commons Math库
*
* @param matrix 输入矩阵
* @return 逆矩阵
*/
public static double[][] matrixInverse(double[][] matrix) {
RealMatrix realMatrix = new Array2DRowRealMatrix(matrix);
try {
// 使用LU分解求逆
DecompositionSolver solver = new LUDecomposition(realMatrix).getSolver();
RealMatrix inverseMatrix = solver.getInverse();
return inverseMatrix.getData();
} catch (SingularMatrixException e) {
logger.error("Matrix is singular, cannot compute inverse", e);
throw new RuntimeException("Matrix inversion failed: singular matrix");
}
}
/**
* 计算矩阵的特征值
*
* @param matrix 输入矩阵
* @return 特征值数组
*/
public static double[] eigenvalues(double[][] matrix) {
RealMatrix realMatrix = new Array2DRowRealMatrix(matrix);
EigenDecomposition eigenDecomposition = new EigenDecomposition(realMatrix);
return eigenDecomposition.getRealEigenvalues();
}
/**
* 归一化处理
* 将数据归一化到[0,1]区间
*
* @param data 输入数据
* @return 归一化后的数据
*/
public static double[] normalize(double[] data) {
if (data == null || data.length == 0) {
return data;
}
double min = Double.MAX_VALUE;
double max = Double.MIN_VALUE;
// 找最大最小值
for (double value : data) {
min = Math.min(min, value);
max = Math.max(max, value);
}
double range = max - min;
if (Math.abs(range) < HarmonicConstants.EPSILON) {
return new double[data.length]; // 返回全0数组
}
double[] normalized = new double[data.length];
for (int i = 0; i < data.length; i++) {
normalized[i] = (data[i] - min) / range;
}
return normalized;
}
/**
* 数据对齐处理
* 将不同采样间隔的数据对齐到相同的时间间隔
*
* @param data 原始数据
* @param originalInterval 原始采样间隔
* @param targetInterval 目标采样间隔
* @return 对齐后的数据
*/
public static float[] alignData(float[] data, int originalInterval, int targetInterval) {
if (targetInterval % originalInterval != 0) {
throw new IllegalArgumentException(
"Target interval must be multiple of original interval");
}
int ratio = targetInterval / originalInterval;
int newLength = data.length / ratio;
float[] alignedData = new float[newLength];
for (int i = 0; i < newLength; i++) {
float sum = 0;
for (int j = 0; j < ratio; j++) {
sum += data[i * ratio + j];
}
alignedData[i] = sum / ratio;
}
return alignedData;
}
}

View File

@@ -21,8 +21,12 @@ import java.util.List;
*/
public interface IRespDataService extends IService<RespData> {
ResponsibilityResult getDynamicDataOld(ResponsibilityCalculateParam responsibilityCalculateParam);
ResponsibilityResult getDynamicData(ResponsibilityCalculateParam responsibilityCalculateParam);
ResponsibilityResult getResponsibilityDataOld(ResponsibilitySecondCalParam responsibilitySecondCalParam);
ResponsibilityResult getResponsibilityData(ResponsibilitySecondCalParam responsibilitySecondCalParam);
Page<RespDataDTO> responsibilityList(BaseParam queryParam);

View File

@@ -27,6 +27,9 @@ import com.njcn.advance.pojo.param.ResponsibilityCalculateParam;
import com.njcn.advance.pojo.param.ResponsibilitySecondCalParam;
import com.njcn.advance.pojo.po.responsibility.RespData;
import com.njcn.advance.pojo.po.responsibility.RespDataResult;
import com.njcn.advance.responsibility.constant.CalculationStatus;
import com.njcn.advance.responsibility.model.HarmonicData;
import com.njcn.advance.responsibility.service.IHarmonicResponsibilityService;
import com.njcn.advance.service.responsibility.IRespDataResultService;
import com.njcn.advance.service.responsibility.IRespDataService;
import com.njcn.advance.service.responsibility.IRespUserDataService;
@@ -91,6 +94,8 @@ public class RespDataServiceImpl extends ServiceImpl<RespDataMapper, RespData> i
private final CommTerminalGeneralClient commTerminalGeneralClient;
private final IHarmonicResponsibilityService harmonicResponsibilityService;
public final static int SORT_10 = 10;
public final static int INTERVAL_TIME_1 = 1;
public final static int INTERVAL_TIME_3 = 3;
@@ -161,7 +166,8 @@ public class RespDataServiceImpl extends ServiceImpl<RespDataMapper, RespData> i
@Override
public ResponsibilityResult getDynamicData(ResponsibilityCalculateParam responsibilityCalculateParam) {
@Deprecated
public ResponsibilityResult getDynamicDataOld(ResponsibilityCalculateParam responsibilityCalculateParam) {
ResponsibilityResult result = new ResponsibilityResult();
//调用c++依赖需要待初始化的参数
int pNode, pNum, win, harmNum;
@@ -419,7 +425,268 @@ public class RespDataServiceImpl extends ServiceImpl<RespDataMapper, RespData> i
}
@Override
public ResponsibilityResult getResponsibilityData(ResponsibilitySecondCalParam responsibilitySecondCalParam) {
public ResponsibilityResult getDynamicData(ResponsibilityCalculateParam responsibilityCalculateParam) {
ResponsibilityResult result = new ResponsibilityResult();
//调用c++依赖需要待初始化的参数
int pNode, pNum, win, harmNum;
float harmMk;
List<UserDataExcel> userDataExcels = respUserDataService.getUserDataExcelList(responsibilityCalculateParam.getUserDataId());
//开始处理,根据接口参数需求,需要节点数(用户数,用户名+监测点号为一个用户),时间范围内功率数据
DealDataResult dealDataResult = RespUserDataServiceImpl.getStanderData(userDataExcels, 1);
List<String> dateStr = PubUtils.getTimes(DateUtil.parse(responsibilityCalculateParam.getSearchBeginTime(), DatePattern.NORM_DATE_PATTERN), DateUtil.parse(responsibilityCalculateParam.getSearchEndTime(), DatePattern.NORM_DATE_PATTERN));
Map<String/*户号@监测点号@户名*/, Map<String/*yyyy-MM-dd天日期*/, List<UserDataExcel>>> finalData = getFinalUserData(dealDataResult, dateStr);
//至此finalData便是我们最终获得的用于计算责任数据,第一个参数节点数值pNode获取到
//第一个参数pNode
pNode = finalData.size();
if (pNode < 1) {
//没有合理的用采数据直接返回
throw new BusinessException(AdvanceResponseEnum.USER_DATA_P_NODE_PARAMETER_ERROR);
}
//第二个参数pNum根据起始时间和截止时间以及监测点测量间隔计算数量
RespCommon pNumAndInterval = getPNumAndInterval(finalData, responsibilityCalculateParam.getLineId(), dateStr);
pNum = pNumAndInterval.getPNum();
int userIntervalTime = pNumAndInterval.getUserIntervalTime();
int lineInterval = pNumAndInterval.getLineInterval();
//第三个参数win,根据起始时间和截止时间的间隔
if (dateStr.size() > 1) {
if (userIntervalTime == INTERVAL_TIME_15) {
win = WINDOW_96;
} else {
win = WINDOW_48;
}
} else {
win = WINDOW_4;
}
//第四个参数harmMk默认为0f
harmMk = 0f;
//第五个参数harmNum与功率数据保持一致
harmNum = pNum;
//至此基础数据组装完毕,开始组装功率数据和谐波数据
//先做谐波数据理论上到这步的时候谐波数据是满足完整性并已经补充完整性到100%,此处需要将谐波数据与功率数据长度匹配上
RespHarmData respHarmData = getRespHarmData(responsibilityCalculateParam, lineInterval);
//harmData填充完毕后开始组装功率数据
//首先获取当前时间内的各个用户的数据
Map<String/*用户名*/, List<UserDataExcel>> originalPData = new HashMap<>(16);
List<String> names = new ArrayList<>();
Set<String> userNamesFinal = finalData.keySet();
for (String userName : userNamesFinal) {
List<UserDataExcel> tempData = new ArrayList<>();
//根据日期将日期数据全部获取出来z
Map<String, List<UserDataExcel>> tempResult = finalData.get(userName);
for (String date : dateStr) {
tempData.addAll(tempResult.get(date));
}
//按日期排序
Collections.sort(tempData);
originalPData.put(userName, tempData);
names.add(userName);
}
//然后开始组装数据
float[][] pData = new float[QvvrDataEntity.MAX_P_NUM][QvvrDataEntity.MAX_P_NODE];
for (int i = 0; i < names.size(); i++) {
//当前某用户测量节点的所有数据
List<UserDataExcel> userDataExcelBodies1 = originalPData.get(names.get(i));
for (int k = 0; k < userDataExcelBodies1.size(); k++) {
float[] pDataStruct = pData[k];
if (pDataStruct == null) {
pDataStruct = new float[QvvrDataEntity.MAX_P_NODE];
}
float[] p = pDataStruct;
p[i] = userDataExcelBodies1.get(k).getWork().floatValue();
pData[k] = pDataStruct;
}
}
//至此功率数据也组装完毕,调用友谊提供的接口
// QvvrDataEntity qvvrDataEntity = new QvvrDataEntity();
// qvvrDataEntity.calFlag = 0;
// qvvrDataEntity.pNode = pNode;
// qvvrDataEntity.pNum = pNum;
// qvvrDataEntity.win = win;
// qvvrDataEntity.harmNum = harmNum;
// qvvrDataEntity.harmMk = harmMk;
// qvvrDataEntity.pData = pData;
// qvvrDataEntity.harmData = respHarmData.getHarmData();
// ResponsibilityAlgorithm responsibilityAlgorithm = new ResponsibilityAlgorithm();
// qvvrDataEntity = responsibilityAlgorithm.getResponsibilityResult(qvvrDataEntity);
HarmonicData harmonicData = harmonicResponsibilityService.fullCalculation(respHarmData.getHarmData(), pData, harmNum, pNum, pNode, win, harmMk);
//至此接口调用结束,开始组装动态责任数据和用户责任量化结果
//首先判断cal_ok的标识位是否为1为0表示程序没有计算出结果
if (harmonicData.getCalculationStatus() == CalculationStatus.FAILED) {
throw new BusinessException(AdvanceResponseEnum.RESPONSIBILITY_PARAMETER_ERROR);
}
//没问题后,先玩动态责任数据
CustomerData[] customerDatas = new CustomerData[harmonicData.getPowerNodeCount()];
float[][] fKdata/*无背景的动态责任数据*/ = harmonicData.getFkData();
//第一个时间节点是起始时间+win窗口得到的时间
Date sTime = DateUtil.parse(dateStr.get(0).concat(" 00:00:00"), DatePattern.NORM_DATETIME_PATTERN);
Calendar calendar = Calendar.getInstance();
calendar.setTime(sTime);
calendar.add(Calendar.MINUTE, (win - 1) * userIntervalTime);
List<Long> timeDatas = new ArrayList<>();
for (int i = 0; i < harmonicData.getPowerCount() - harmonicData.getWindowSize(); i++) {
calendar.add(Calendar.MINUTE, userIntervalTime);
//一个时间点所有的用户数据
float[] fKdatum = fKdata[i];
for (int k = 0; k < harmonicData.getPowerNodeCount(); k++) {
CustomerData customerData = customerDatas[k];
if (null == customerData) {
customerData = new CustomerData();
customerData.setCustomerName(names.get(k));
}
List<Float> valueDatas = customerData.getValueDatas();
Float valueTemp = fKdatum[k];
if (valueTemp.isNaN()) {
valueTemp = 0.0f;
}
valueDatas.add(valueTemp);
customerData.setValueDatas(valueDatas);
customerDatas[k] = customerData;
}
timeDatas.add(calendar.getTimeInMillis());
}
//OK拿到所有测量点的数据了现在就是看如何将相同户号的动态数据进行算术和求值之前的用户name为户号@测量点号@用户名
Map<String/*用户名(户号)*/, List<CustomerData>> customerDataTemp = new HashMap<>(16);
for (CustomerData data : customerDatas) {
String customerName = data.getCustomerName();
String[] customerInfo = customerName.split("@");
String name = customerInfo[2] + "(" + customerInfo[0] + ")";
List<CustomerData> customerData = customerDataTemp.get(name);
CustomerData temp = data;
temp.setCustomerName(name);
if (CollectionUtils.isEmpty(customerData)) {
customerData = new ArrayList<>();
}
customerData.add(temp);
customerDataTemp.put(name, customerData);
}
//动态数据组装完成后,开始组装责任数据
List<CustomerResponsibility> customerResponsibilities = getCustomerResponsibilityData(names, harmonicData.getSumFKData(), harmonicData.getPowerNodeCount());
//根据前十的用户数据,获取这些用户的动态责任数据
List<CustomerData> customerData = new ArrayList<>();
for (CustomerResponsibility customerResponsibility : customerResponsibilities) {
String cusName = customerResponsibility.getCustomerName();
List<CustomerData> customerData1 = customerDataTemp.get(cusName);
if (CollectionUtils.isEmpty(customerData1)) {
continue;
}
if (customerData1.size() == 1) {
//表示用户唯一的
customerData.add(customerData1.get(0));
} else {
// 表示用户可能包含多个监测点号,需要进行数据累加
CustomerData customerDataT = new CustomerData();
customerDataT.setCustomerName(cusName);
//进行数值累加
List<Float> valueDatas = new ArrayList<>();
for (int i = 0; i < customerData1.get(0).getValueDatas().size(); i++) {
float original = 0.0f;
for (CustomerData data : customerData1) {
original = original + data.getValueDatas().get(i);
}
valueDatas.add(original);
}
customerDataT.setValueDatas(valueDatas);
customerData.add(customerDataT);
}
}
result.setDatas(customerData);
result.setTimeDatas(timeDatas);
result.setResponsibilities(customerResponsibilities);
//此次的操作进行入库操作responsibilityData表数据
//根据监测点名称+谐波框选的时间来查询,是否做过责任量化
String timeWin = responsibilityCalculateParam.getSearchBeginTime().replaceAll(StrPool.DASHED, "").concat(StrPool.DASHED).concat(responsibilityCalculateParam.getSearchEndTime().replaceAll(StrPool.DASHED, ""));
String type = responsibilityCalculateParam.getType() == 0 ? "谐波电流" : "谐波电压";
//为了避免有监测点名称重复的,最终还是选择使用监测点索引来判断唯一性
LambdaQueryWrapper<RespData> respDataLambdaQueryWrapper = new LambdaQueryWrapper<>();
respDataLambdaQueryWrapper.eq(RespData::getLineId, responsibilityCalculateParam.getLineId())
.eq(RespData::getUserDataId, responsibilityCalculateParam.getUserDataId())
.eq(RespData::getTimeWindow, timeWin)
.eq(RespData::getDataType, type)
.eq(RespData::getState, DataStateEnum.ENABLE.getCode());
List<RespData> responsibilityDataTemp = this.baseMapper.selectList(respDataLambdaQueryWrapper);
RespData responsibilityData;
if (CollectionUtils.isEmpty(responsibilityDataTemp)) {
responsibilityData = new RespData();
//库中没有记录则可以新建数据进行插入
responsibilityData.setLineId(responsibilityCalculateParam.getLineId());
responsibilityData.setUserDataId(responsibilityCalculateParam.getUserDataId());
responsibilityData.setDataType(type);
responsibilityData.setDataTimes(responsibilityCalculateParam.getTime().toString());
responsibilityData.setTimeWindow(timeWin);
responsibilityData.setState(DataStateEnum.ENABLE.getCode());
//进行插入操作
this.baseMapper.insert(responsibilityData);
} else {
//库中存在记录只需要判断次数进行数据更新
responsibilityData = responsibilityDataTemp.get(0);
String times = responsibilityData.getDataTimes();
List<String> timesList = Stream.of(times.split(StrPool.COMMA)).collect(Collectors.toList());
Integer time = responsibilityCalculateParam.getTime();
if (!timesList.contains(time.toString())) {
timesList.add(time.toString());
timesList = timesList.stream().sorted().collect(Collectors.toList());
responsibilityData.setDataTimes(String.join(StrPool.COMMA, timesList));
}
//执行更新操作
this.baseMapper.updateById(responsibilityData);
}
//入库完毕之后,需要将必要数据进行序列化存储,方便后期的重复利用
/*
* 需要序列化三种数据结构 1 cal_flag置为1时需要的一些列参数的CacheQvvrData 2 cal_flag为0时的动态结果。3 用户责任量化结果
* 其中1/2都只需要一个文件即可
* 3因为用户限值的变化调整可能存在很多个文件具体根据用户的选择而定
*
* 路径的结构为temPath+userData+excelName+type+timeWin+lineIndex+time+文件名
* 用户责任量化结果,需要再细化到限值
*/
//首先判断有没有存储记录,没有则存储,有就略过 指定测点、时间窗口、谐波类型、谐波次数判断唯一性
LambdaQueryWrapper<RespDataResult> respDataResultLambdaQueryWrapper = new LambdaQueryWrapper<>();
respDataResultLambdaQueryWrapper.eq(RespDataResult::getResDataId, responsibilityData.getId())
.eq(RespDataResult::getTime, responsibilityCalculateParam.getTime())
.eq(RespDataResult::getStartTime, DateUtil.parse(responsibilityCalculateParam.getSearchBeginTime() + " 00:00:00", DatePattern.NORM_DATETIME_PATTERN))
.eq(RespDataResult::getEndTime, DateUtil.parse(responsibilityCalculateParam.getSearchEndTime() + " 23:59:59", DatePattern.NORM_DATETIME_PATTERN))
.eq(RespDataResult::getLimitValue, respHarmData.getOverLimit());
RespDataResult respDataResult = respDataResultService.getOne(respDataResultLambdaQueryWrapper);
if (Objects.isNull(respDataResult)) {
respDataResult = new RespDataResult();
respDataResult.setResDataId(responsibilityData.getId());
respDataResult.setTime(responsibilityCalculateParam.getTime());
respDataResult.setStartTime(DateUtil.parse(responsibilityCalculateParam.getSearchBeginTime() + " 00:00:00", DatePattern.NORM_DATETIME_PATTERN));
respDataResult.setEndTime(DateUtil.parse(responsibilityCalculateParam.getSearchEndTime() + " 23:59:59", DatePattern.NORM_DATETIME_PATTERN));
respDataResult.setLimitValue(respHarmData.getOverLimit());
//时间横轴数据 timeDatas
JSONArray timeDataJson = JSONArray.parseArray(JSON.toJSONString(timeDatas));
InputStream timeDataStream = IoUtil.toUtf8Stream(timeDataJson.toString());
String timeDataPath = fileStorageUtil.uploadStream(timeDataStream, OssPath.RESPONSIBILITY_USER_RESULT_DATA, FileUtil.generateFileName("json"));
respDataResult.setTimeData(timeDataPath);
//用户每时刻对应的责任数据
JSONArray customerDataJson = JSONArray.parseArray(JSON.toJSONString(customerData));
InputStream customerStream = IoUtil.toUtf8Stream(customerDataJson.toString());
String customerPath = fileStorageUtil.uploadStream(customerStream, OssPath.RESPONSIBILITY_USER_RESULT_DATA, FileUtil.generateFileName("json"));
respDataResult.setUserDetailData(customerPath);
//调用qvvr生成的中间数据
CacheQvvrData cacheQvvrData = new CacheQvvrData(harmonicData.getPowerNodeCount(), harmonicData.getHarmonicCount(), harmonicData.getHarmonicData(), harmonicData.getFkData(), harmonicData.getHkData(), names, userIntervalTime, harmonicData.getWindowSize(), userIntervalTime, respHarmData.getHarmTime());
String cacheJson = PubUtils.obj2json(cacheQvvrData);
InputStream cacheQvvrDataStream = IoUtil.toUtf8Stream(cacheJson);
String cacheQvvrDataPath = fileStorageUtil.uploadStream(cacheQvvrDataStream, OssPath.RESPONSIBILITY_USER_RESULT_DATA, FileUtil.generateFileName("json"));
respDataResult.setQvvrData(cacheQvvrDataPath);
//用户前10数据存储
JSONArray customerResJson = JSONArray.parseArray(JSON.toJSONString(customerResponsibilities));
InputStream customerResStream = IoUtil.toUtf8Stream(customerResJson.toString());
String customerResPath = fileStorageUtil.uploadStream(customerResStream, OssPath.RESPONSIBILITY_USER_RESULT_DATA, FileUtil.generateFileName("json"));
respDataResult.setUserResponsibility(customerResPath);
respDataResultService.save(respDataResult);
}
//防止过程中创建了大量的对象主动调用下GC处理
System.gc();
result.setResponsibilityDataIndex(responsibilityData.getId());
return result;
}
@Override
@Deprecated
public ResponsibilityResult getResponsibilityDataOld(ResponsibilitySecondCalParam responsibilitySecondCalParam) {
ResponsibilityResult result = new ResponsibilityResult();
//根据时间天数,获取理论上多少次用采数据
RespData responsibilityData = this.baseMapper.selectById(responsibilitySecondCalParam.getResDataId());
@@ -664,6 +931,258 @@ public class RespDataServiceImpl extends ServiceImpl<RespDataMapper, RespData> i
return result;
}
@Override
public ResponsibilityResult getResponsibilityData(ResponsibilitySecondCalParam responsibilitySecondCalParam) {
ResponsibilityResult result = new ResponsibilityResult();
//根据时间天数,获取理论上多少次用采数据
RespData responsibilityData = this.baseMapper.selectById(responsibilitySecondCalParam.getResDataId());
if (Objects.isNull(responsibilityData)) {
throw new BusinessException(AdvanceResponseEnum.RESP_DATA_NOT_FOUND);
}
Overlimit overlimit = lineFeignClient.getOverLimitData(responsibilityData.getLineId()).getData();
//获取总数据
LambdaQueryWrapper<RespDataResult> respDataResultLambdaQueryWrapper = new LambdaQueryWrapper<>();
respDataResultLambdaQueryWrapper.eq(RespDataResult::getResDataId, responsibilityData.getId())
.eq(RespDataResult::getTime, responsibilitySecondCalParam.getTime());
if (responsibilitySecondCalParam.getType() == 0) {
respDataResultLambdaQueryWrapper.eq(RespDataResult::getLimitValue, PubUtils.getValueByMethod(overlimit, "getIharm", responsibilitySecondCalParam.getTime()));
} else {
respDataResultLambdaQueryWrapper.eq(RespDataResult::getLimitValue, PubUtils.getValueByMethod(overlimit, "getUharm", responsibilitySecondCalParam.getTime()));
}
RespDataResult respDataResultTemp = respDataResultService.getOne(respDataResultLambdaQueryWrapper);
if (Objects.isNull(respDataResultTemp)) {
throw new BusinessException(AdvanceResponseEnum.RESP_DATA_NOT_FOUND);
}
CacheQvvrData cacheQvvrData;
try {
InputStream fileStream = fileStorageUtil.getFileStream(respDataResultTemp.getQvvrData());
String qvvrDataStr = IoUtil.readUtf8(fileStream);
cacheQvvrData = PubUtils.json2obj(qvvrDataStr, CacheQvvrData.class);
} catch (Exception exception) {
throw new BusinessException(AdvanceResponseEnum.RESP_RESULT_DATA_NOT_FOUND);
}
//获取成功后,延长该缓存的生命周期为初始生命时长
int win = cacheQvvrData.getWin();
//不管窗口为4或者96都需要考虑最小公倍数
//最小公倍数根据监测点测量间隔来获取,可以考虑也由第一步操作缓存起来
int minMultiple = cacheQvvrData.getMinMultiple();
//谐波横轴所有的时间
List<Long> times = cacheQvvrData.getTimes();
//首先根据窗口判断限值时间范围是否满足最小窗口
Long limitSL = DateUtil.parse(responsibilitySecondCalParam.getLimitStartTime(), DatePattern.NORM_DATETIME_PATTERN).getTime();
Long limitEL = DateUtil.parse(responsibilitySecondCalParam.getLimitEndTime(), DatePattern.NORM_DATETIME_PATTERN).getTime();
List<Integer> temp = getTimes(times, limitSL, limitEL);
//在动态责任数据中,时间的起始索引位置和截止索引位置
Integer timeStartIndex = temp.get(0);
Integer timeEndIndex = temp.get(1);
//间隔中的时间长度
int minus = timeEndIndex - timeStartIndex + 1;
//组装参数
QvvrDataEntity qvvrDataEntity = new QvvrDataEntity();
qvvrDataEntity.calFlag = 1;
qvvrDataEntity.pNode = cacheQvvrData.getPNode();
qvvrDataEntity.harmMk = responsibilitySecondCalParam.getLimitValue();
qvvrDataEntity.win = win;
int resNum;
float[][] FKdata = new float[9600][QvvrDataEntity.MAX_P_NODE];
float[][] HKdata = new float[9600][QvvrDataEntity.MAX_P_NODE + 1];
float[] harmData = new float[1440 * 100];
float[][] fKdataOriginal = cacheQvvrData.getFKData();
float[][] hKdataOriginal = cacheQvvrData.getHKData();
float[] harmDataOriginal = cacheQvvrData.getHarmData();
//如果起始索引与截止索引的差值等于时间轴的长度,则说明用户没有选择限值时间,直接带入全部的原始数据,参与计算即可
if (minus == times.size()) {
qvvrDataEntity.harmNum = cacheQvvrData.getHarmNum();
qvvrDataEntity.resNum = cacheQvvrData.getHarmNum() - cacheQvvrData.getWin();
qvvrDataEntity.setFKData(cacheQvvrData.getFKData());
qvvrDataEntity.setHKData(cacheQvvrData.getHKData());
qvvrDataEntity.harmData = cacheQvvrData.getHarmData();
} else {
if (win == WINDOW_4) {
//当窗口为4时,两个时间限制范围在最小公倍数为15时最起码有5个有效时间点在最小公倍数为30时最起码有3个有效时间点
if (minMultiple == INTERVAL_TIME_15) {
if (minus < MINUS_5) {
throw new BusinessException(AdvanceResponseEnum.WIN_TIME_ERROR);
}
resNum = minus - MINUS_4;
} else if (minMultiple == INTERVAL_TIME_30) {
if (minus < MINUS_3) {
throw new BusinessException(AdvanceResponseEnum.WIN_TIME_ERROR);
}
resNum = minus - MINUS_2;
} else {
throw new BusinessException(AdvanceResponseEnum.CALCULATE_INTERVAL_ERROR);
}
} else if (win == WINDOW_96) {
//当窗口为96时,两个时间限值范围在最小公倍数为15时最起码有97个有效时间点在最小公倍数为30时最起码有49个有效时间点
if (minMultiple == INTERVAL_TIME_15) {
if (minus <= WINDOW_96) {
throw new BusinessException(AdvanceResponseEnum.WIN_TIME_ERROR);
}
resNum = minus - WINDOW_96;
} else if (minMultiple == INTERVAL_TIME_30) {
if (minus <= WINDOW_48) {
throw new BusinessException(AdvanceResponseEnum.WIN_TIME_ERROR);
}
resNum = minus - WINDOW_48;
} else {
throw new BusinessException(AdvanceResponseEnum.CALCULATE_INTERVAL_ERROR);
}
} else {
throw new BusinessException(AdvanceResponseEnum.CALCULATE_INTERVAL_ERROR);
}
qvvrDataEntity.resNum = resNum;
qvvrDataEntity.harmNum = minus;
//因为限值时间实际是含头含尾的所以harmNum需要索引差值+1
for (int i = timeStartIndex; i <= timeEndIndex; i++) {
harmData[i - timeStartIndex] = harmDataOriginal[i];
}
qvvrDataEntity.harmData = harmData;
//FKData与HKData的值则等于resNum
for (int i = timeStartIndex; i < timeStartIndex + resNum; i++) {
FKdata[i - timeStartIndex] = fKdataOriginal[i];
HKdata[i - timeStartIndex] = hKdataOriginal[i];
}
qvvrDataEntity.setFKData(FKdata);
qvvrDataEntity.setHKData(HKdata);
}
// ResponsibilityAlgorithm responsibilityAlgorithm = new ResponsibilityAlgorithm();
// qvvrDataEntity = responsibilityAlgorithm.getResponsibilityResult(qvvrDataEntity);
//
// if (qvvrDataEntity.calOk == 0) {
// throw new BusinessException(AdvanceResponseEnum.RESPONSIBILITY_PARAMETER_ERROR);
// }
HarmonicData harmonicData = harmonicResponsibilityService.partialCalculation(
qvvrDataEntity.getHarmData(), qvvrDataEntity.getFKData(), qvvrDataEntity.getHKData(), qvvrDataEntity.getHarmNum(), qvvrDataEntity.getPNode(), qvvrDataEntity.getWin(), qvvrDataEntity.getResNum(), qvvrDataEntity.getHarmMk());
if (harmonicData.getCalculationStatus() == CalculationStatus.FAILED) {
throw new BusinessException(AdvanceResponseEnum.RESPONSIBILITY_PARAMETER_ERROR);
}
//没问题后,先玩动态责任数据
List<String> names = cacheQvvrData.getNames();
CustomerData[] customerDatas = new CustomerData[harmonicData.getPowerNodeCount()];
float[][] fKdata/*无背景的动态责任数据*/ = harmonicData.getFkData();
//第一个时间节点是起始时间+win窗口得到的时间
Date sTime = new Date();
sTime.setTime(times.get(timeStartIndex));
Calendar calendar = Calendar.getInstance();
calendar.setTime(sTime);
calendar.add(Calendar.MINUTE, (win - 1) * minMultiple);
List<Long> timeDatas = new ArrayList<>();
for (int i = 0; i < harmonicData.getHarmonicCount() - harmonicData.getWindowSize(); i++) {
calendar.add(Calendar.MINUTE, minMultiple);
//一个时间点所有的用户数据
float[] fKdatum = fKdata[i];
for (int k = 0; k < harmonicData.getPowerNodeCount(); k++) {
CustomerData customerData = customerDatas[k];
if (null == customerData) {
customerData = new CustomerData();
customerData.setCustomerName(names.get(k));
}
List<Float> valueDatas = customerData.getValueDatas();
Float valueTemp = fKdatum[k];
if (valueTemp.isNaN()) {
valueTemp = 0.0f;
}
valueDatas.add(valueTemp);
customerData.setValueDatas(valueDatas);
customerDatas[k] = customerData;
}
timeDatas.add(calendar.getTimeInMillis());
}
//OK拿到所有测量点的数据了现在就是看如何将相同户号的动态数据进行算术和求值之前的用户name为户号@测量点号@用户名
Map<String/*用户名(户号)*/, List<CustomerData>> customerDataTemp = new HashMap<>(32);
for (CustomerData data : customerDatas) {
String customerName = data.getCustomerName();
String[] customerInfo = customerName.split("@");
String name = customerInfo[2] + "(" + customerInfo[0] + ")";
List<CustomerData> customerData = customerDataTemp.get(name);
CustomerData customerTemp = data;
customerTemp.setCustomerName(name);
if (CollectionUtils.isEmpty(customerData)) {
customerData = new ArrayList<>();
}
customerData.add(customerTemp);
customerDataTemp.put(name, customerData);
}
//调用程序接口后,首先组装责任量化结果
float[] sumFKdata = harmonicData.getSumFKData();
List<CustomerResponsibility> customerResponsibilities = getCustomerResponsibilityData(names, sumFKdata, harmonicData.getPowerNodeCount());
//根据前十的用户数据,获取这些用户的动态责任数据
List<CustomerData> customerData = new ArrayList<>();
for (CustomerResponsibility customerResponsibility : customerResponsibilities) {
String cusName = customerResponsibility.getCustomerName();
List<CustomerData> customerData1 = customerDataTemp.get(cusName);
if (CollectionUtils.isEmpty(customerData1)) {
continue;
}
if (customerData1.size() == 1) {
//表示用户唯一的
customerData.add(customerData1.get(0));
} else {
// 表示用户可能包含多个监测点号,需要进行数据累加
CustomerData customerDataT = new CustomerData();
customerDataT.setCustomerName(cusName);
//进行数值累加
List<Float> valueDatas = new ArrayList<>();
for (int i = 0; i < customerData1.get(0).getValueDatas().size(); i++) {
float original = 0.0f;
for (CustomerData data : customerData1) {
original = original + data.getValueDatas().get(i);
}
valueDatas.add(original);
}
customerDataT.setValueDatas(valueDatas);
customerData.add(customerDataT);
}
}
//接着组装动态数据结果
result.setResponsibilities(customerResponsibilities);
result.setDatas(customerData);
result.setTimeDatas(timeDatas);
//首先判断有没有存储记录,没有则存储,有就略过 指定测点、时间窗口、谐波类型、谐波次数判断唯一性
LambdaQueryWrapper<RespDataResult> respDataResultLambdaQueryWrapper1 = new LambdaQueryWrapper<>();
respDataResultLambdaQueryWrapper1.eq(RespDataResult::getResDataId, responsibilityData.getId())
.eq(RespDataResult::getTime, responsibilitySecondCalParam.getTime())
.eq(RespDataResult::getStartTime, DateUtil.parse(responsibilitySecondCalParam.getLimitStartTime(), DatePattern.NORM_DATETIME_PATTERN))
.eq(RespDataResult::getEndTime, DateUtil.parse(responsibilitySecondCalParam.getLimitEndTime(), DatePattern.NORM_DATETIME_PATTERN))
.eq(RespDataResult::getLimitValue, responsibilitySecondCalParam.getLimitValue());
RespDataResult respDataResult = respDataResultService.getOne(respDataResultLambdaQueryWrapper1);
if (Objects.isNull(respDataResult)) {
respDataResult = new RespDataResult();
respDataResult.setResDataId(responsibilityData.getId());
respDataResult.setTime(responsibilitySecondCalParam.getTime());
respDataResult.setStartTime(DateUtil.parse(responsibilitySecondCalParam.getLimitStartTime(), DatePattern.NORM_DATETIME_PATTERN));
respDataResult.setEndTime(DateUtil.parse(responsibilitySecondCalParam.getLimitEndTime(), DatePattern.NORM_DATETIME_PATTERN));
respDataResult.setLimitValue(responsibilitySecondCalParam.getLimitValue());
//时间横轴数据 timeDatas
JSONArray timeDataJson = JSONArray.parseArray(JSON.toJSONString(timeDatas));
InputStream timeDataStream = IoUtil.toUtf8Stream(timeDataJson.toString());
String timeDataPath = fileStorageUtil.uploadStream(timeDataStream, OssPath.RESPONSIBILITY_USER_RESULT_DATA, FileUtil.generateFileName("json"));
respDataResult.setTimeData(timeDataPath);
//用户每时刻对应的责任数据
JSONArray customerDataJson = JSONArray.parseArray(JSON.toJSONString(customerData));
InputStream customerStream = IoUtil.toUtf8Stream(customerDataJson.toString());
String customerPath = fileStorageUtil.uploadStream(customerStream, OssPath.RESPONSIBILITY_USER_RESULT_DATA, FileUtil.generateFileName("json"));
respDataResult.setUserDetailData(customerPath);
//用户前10数据存储
JSONArray customerResJson = JSONArray.parseArray(JSON.toJSONString(customerResponsibilities));
InputStream customerResStream = IoUtil.toUtf8Stream(customerResJson.toString());
String customerResPath = fileStorageUtil.uploadStream(customerResStream, OssPath.RESPONSIBILITY_USER_RESULT_DATA, FileUtil.generateFileName("json"));
respDataResult.setUserResponsibility(customerResPath);
respDataResultService.save(respDataResult);
}
//防止过程中创建了大量的对象主动调用下GC处理
System.gc();
result.setResponsibilityDataIndex(responsibilityData.getId());
return result;
}
/**
* 监测点测量间隔获取最后用于计算的功率数据