初始化
This commit is contained in:
@@ -0,0 +1,28 @@
|
||||
package com.njcn.harmonic.utils;
|
||||
|
||||
import java.math.BigDecimal;
|
||||
|
||||
/**
|
||||
* @author hongawen(创建) -----denghuajun(移植使用)
|
||||
* @Date: 2018/8/27 11:29
|
||||
*/
|
||||
public class FloatUtils {
|
||||
|
||||
|
||||
/**
|
||||
* 保留传入进来的float的两位小数,四舍五入的方式
|
||||
*
|
||||
* @param data Float参数
|
||||
*/
|
||||
public static float get2Float(Float data) {
|
||||
if (data == null) {
|
||||
return 0f;
|
||||
}
|
||||
int scale = 2;//设置位数
|
||||
int roundingMode = 4;//表示四舍五入,可以选择其他舍值方式,例如去尾,等等.
|
||||
BigDecimal bd = new BigDecimal(data);
|
||||
bd = bd.setScale(scale, roundingMode);
|
||||
data = bd.floatValue();
|
||||
return data;
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,299 @@
|
||||
package com.njcn.harmonic.utils;
|
||||
|
||||
|
||||
import com.njcn.harmonic.pojo.dto.ComAssessDTO;
|
||||
import org.slf4j.Logger;
|
||||
import org.slf4j.LoggerFactory;
|
||||
import org.springframework.stereotype.Component;
|
||||
|
||||
import java.util.List;
|
||||
|
||||
/**
|
||||
* @author yexb
|
||||
* @version 1.0
|
||||
* @Date 2018/8/23 16:02
|
||||
*/
|
||||
//因素集U={频率偏差、电网谐波、电压波动与闪变、电压偏差、电压暂降、三相不平衡}
|
||||
//评判级分为5个等级,即:Q = {很差,较差,合格,良好,优质}
|
||||
/* 电压偏差 电网谐波 三相不平衡 频率偏差 电压波动 电压暂降
|
||||
(偏差绝对值/%) (电压总谐波畸变率%) (不平衡度/%) (偏差绝对值/Hz) (短时闪变值) (暂降幅度%)
|
||||
第1 级 10~ 6..0~ 4.0~ 0.3~ 0.8~ 90~
|
||||
第2 级 7~10 4.0~6.0 2..0~4.0 0.2~0.3 0.6~0.8 40~90
|
||||
第3 级 4~7 2.0~4.0 1.0~2.0 0.1~0.2 0.4~0.6 20~40
|
||||
第4 级 2~4 1.0~2.0 0.5~1.0 0.05~0.1 0.2~0.4 10~20
|
||||
第5 级 0~2 0~1.0 0~0.5 0~0.05 0~0.2 0~10
|
||||
*/
|
||||
@Component
|
||||
public class HarmonicComAssesUtil {
|
||||
// 日志记录
|
||||
private static final Logger logger = LoggerFactory.getLogger(com.njcn.harmonic.utils.HarmonicComAssesUtil.class);
|
||||
private static final int ST_QT_NUM = 6;//系统评价指标数目
|
||||
private static final int GRADE_NUM = 5;//指标分级数目
|
||||
private static final int METHOD_NUM = 5;//评估方法数
|
||||
private static final int METHOD_IDX1 = 0;//层次分析法
|
||||
private static final int METHOD_IDX2 = 1;//优序图法
|
||||
private static final int METHOD_IDX3 = 2;//专家打分法
|
||||
private static final int METHOD_IDX4 = 3;//熵权法
|
||||
private static final int METHOD_IDX5 = 4;//变异系数法
|
||||
|
||||
private static final int IDX_FREQ = 0;//频率
|
||||
private static final int IDX_UTHD = 1;//电压畸变率
|
||||
private static final int IDX_FLICK = 2;//电压闪变
|
||||
private static final int IDX_UDEV = 3;//电压偏差
|
||||
private static final int IDX_EVT = 4;//电压暂降
|
||||
private static final int IDX_UBPH = 5;//电压不平衡
|
||||
|
||||
private static final int MAX_DATA_TYPE = 5;//5种统计数据
|
||||
private static final int MAX_DATA_NUM = 1440 * 31;//最大统计数据个数
|
||||
private static final int MAX_EVT_NUM = 1000;//最大暂态事件个数
|
||||
|
||||
//3种主观赋权法直接摘录文档中计算好的最终评估权重
|
||||
//层次分析法
|
||||
private float W1[] = {0.38f, 0.22f, 0.13f, 0.12f, 0.08f, 0.07f};
|
||||
//优序图法
|
||||
private float W2[] = {0.28f, 0.24f, 0.19f, 0.14f, 0.10f, 0.05f};
|
||||
//专家打分法
|
||||
private float W3[] = {0.39f, 0.26f, 0.12f, 0.09f, 0.07f, 0.07f};
|
||||
|
||||
//数据评估矩阵
|
||||
private float Assess[][];
|
||||
//权重矩阵
|
||||
private float Weight[][];
|
||||
|
||||
float A[];
|
||||
|
||||
// 综合评估程序,返回值为评估分
|
||||
public float GetComAsses(float in_data[][]) {
|
||||
float fResult = 0.0f;//返回最终评分
|
||||
try{
|
||||
//实例化所有参数
|
||||
Assess = new float[ST_QT_NUM][GRADE_NUM];
|
||||
Weight = new float[ST_QT_NUM][METHOD_NUM];
|
||||
A = new float[ST_QT_NUM];
|
||||
float B[] = new float[GRADE_NUM];
|
||||
|
||||
int i, j;
|
||||
float sum1, sum2;
|
||||
Assess = in_data;//给评估矩阵赋值,此值直接从相应的数据库中获取
|
||||
|
||||
//W1-W3为主观赋权,直接从文档上摘录赋权
|
||||
for (i = 0; i < ST_QT_NUM; i++) {
|
||||
Weight[i][METHOD_IDX1] = W1[i];
|
||||
Weight[i][METHOD_IDX2] = W2[i];
|
||||
Weight[i][METHOD_IDX3] = W3[i];
|
||||
}
|
||||
//熵权法求W4
|
||||
if (getSqf()) {
|
||||
//变异系数法求W5
|
||||
if (getBysxf()) {
|
||||
//G和F得出综合权重A
|
||||
if (getZhqzf()) {
|
||||
//A[0] = 0.28;A[1] = 0.23;A[2] = 0.13;A[3] = 0.16;A[4] = 0.08;A[5] = 0.12;
|
||||
for (i = 0; i < GRADE_NUM; i++) {
|
||||
B[i] = 0;
|
||||
for (j = 0; j < ST_QT_NUM; j++) {
|
||||
B[i] += A[j] * Assess[j][i];
|
||||
}
|
||||
}
|
||||
sum1 = 0;
|
||||
sum2 = 0;
|
||||
for (i = 0; i < GRADE_NUM; i++) {
|
||||
sum1 += (i + 1) * B[i];
|
||||
sum2 += B[i];
|
||||
}
|
||||
fResult = sum1 / sum2;
|
||||
}
|
||||
}
|
||||
}
|
||||
fResult = FloatUtils.get2Float(fResult);
|
||||
}catch (Exception e){
|
||||
//Todo
|
||||
}
|
||||
return fResult;
|
||||
}
|
||||
|
||||
/**
|
||||
* 大批量的监测点的综合得分获取平均值
|
||||
* @param comAssessDTOS 批量数据
|
||||
*/
|
||||
public float getAllComAss(List<ComAssessDTO> comAssessDTOS) {
|
||||
float allData=0f;
|
||||
for(int i=0;i<comAssessDTOS.size();i++){
|
||||
ComAssessDTO tempPqs = comAssessDTOS.get(i);
|
||||
//组合二维数组
|
||||
float f1[][]={{tempPqs.getFreqDev1(),tempPqs.getFreqDev2(),tempPqs.getFreqDev3(),tempPqs.getFreqDev4(),tempPqs.getFreqDev5()}
|
||||
,{tempPqs.getVTHD1(),tempPqs.getVTHD2(),tempPqs.getVTHD3(),tempPqs.getVTHD4(),tempPqs.getVTHD5(),}
|
||||
,{tempPqs.getDataPST1(),tempPqs.getDataPST2(),tempPqs.getDataPST3(),tempPqs.getDataPST4(),tempPqs.getDataPST5()}
|
||||
,{tempPqs.getVuDev1(),tempPqs.getVuDev2(),tempPqs.getVuDev3(),tempPqs.getVuDev4(),tempPqs.getVuDev5(),}
|
||||
,{tempPqs.getVUnbalance1(),tempPqs.getVUnbalance2(),tempPqs.getVUnbalance3(),tempPqs.getVUnbalance4(),tempPqs.getVUnbalance5(),}
|
||||
,{tempPqs.getEvent1(),tempPqs.getEvent2(),tempPqs.getEvent3(),tempPqs.getEvent4(),tempPqs.getEvent5(),}};
|
||||
//获取该值返回的数据
|
||||
float temp=GetComAsses(f1);
|
||||
allData+=temp;
|
||||
}
|
||||
float aveData=allData/comAssessDTOS.size();
|
||||
return FloatUtils.get2Float(aveData);
|
||||
}
|
||||
|
||||
|
||||
//熵权法求权重
|
||||
private boolean getSqf() {
|
||||
boolean blSqfFlag = true;
|
||||
try {
|
||||
int i, j;
|
||||
float k, m;
|
||||
float sum[] = new float[ST_QT_NUM];
|
||||
float e[] = new float[ST_QT_NUM];
|
||||
float d[] = new float[ST_QT_NUM];
|
||||
|
||||
//计算第j个指标的熵值e(j)
|
||||
m = GRADE_NUM;
|
||||
//k = (1/1.6094379124341);
|
||||
k = (float) (1 / ((Math.log(m)) / Math.log(2.7183)));
|
||||
for (i = 0; i < ST_QT_NUM; i++) {
|
||||
sum[i] = 0;
|
||||
for (j = 0; j < GRADE_NUM; j++) {
|
||||
if (Assess[i][j] != 0)
|
||||
sum[i] += Assess[i][j] * (Math.log(Assess[i][j]) / Math.log(2.7183));
|
||||
}
|
||||
e[i] = -k * sum[i];
|
||||
}
|
||||
for (i = 0; i < ST_QT_NUM; i++)
|
||||
d[i] = 1 - e[i];
|
||||
sum[0] = 0;
|
||||
for (i = 0; i < ST_QT_NUM; i++)
|
||||
sum[0] += d[i];
|
||||
for (i = 0; i < ST_QT_NUM; i++)
|
||||
Weight[i][METHOD_IDX4] = d[i] / sum[0];
|
||||
} catch (Exception e) {
|
||||
logger.error(e.getMessage());
|
||||
blSqfFlag = false;
|
||||
}
|
||||
return blSqfFlag;
|
||||
}
|
||||
|
||||
//变异系数法求权重
|
||||
private boolean getBysxf() {
|
||||
boolean blBysxfFlag = true;
|
||||
try {
|
||||
float avg_f[] = new float[ST_QT_NUM];//平均值
|
||||
float std_f[] = new float[ST_QT_NUM];//标准差
|
||||
float byxs[] = new float[ST_QT_NUM];//变异系数
|
||||
float sum;
|
||||
int i, j;
|
||||
for (i = 0; i < ST_QT_NUM; i++) {
|
||||
avg_f[i] = 0;
|
||||
std_f[i] = 0;
|
||||
byxs[i] = 0;
|
||||
}
|
||||
//求平均值
|
||||
for (i = 0; i < ST_QT_NUM; i++) {
|
||||
sum = 0;
|
||||
for (j = 0; j < GRADE_NUM; j++)
|
||||
sum += Assess[i][j];
|
||||
avg_f[i] = sum / GRADE_NUM;
|
||||
}
|
||||
//求标准差
|
||||
for (i = 0; i < ST_QT_NUM; i++) {
|
||||
sum = 0;
|
||||
for (j = 0; j < GRADE_NUM; j++)
|
||||
sum += Math.pow((Assess[i][j] - avg_f[i]), 2);
|
||||
std_f[i] = (float) (Math.sqrt(sum / GRADE_NUM));
|
||||
}
|
||||
//求变异系数
|
||||
for (i = 0; i < ST_QT_NUM; i++) {
|
||||
if (avg_f[i] < 0)
|
||||
avg_f[i] = 0 - avg_f[i];
|
||||
byxs[i] = std_f[i] / avg_f[i];
|
||||
}
|
||||
sum = 0;
|
||||
for (i = 0; i < ST_QT_NUM; i++)
|
||||
sum += byxs[i];
|
||||
for (i = 0; i < ST_QT_NUM; i++)
|
||||
Weight[i][METHOD_IDX5] = byxs[i] / sum;
|
||||
} catch (Exception e) {
|
||||
logger.error(e.getMessage());
|
||||
blBysxfFlag = false;
|
||||
}
|
||||
return blBysxfFlag;
|
||||
}
|
||||
|
||||
//求综合权重,主观权重和客观权重占比相等各自50%
|
||||
private boolean getZhqzf() {
|
||||
float D[] = new float[ST_QT_NUM];
|
||||
float e[] = new float[ST_QT_NUM];
|
||||
float C[][] = new float[ST_QT_NUM][ST_QT_NUM];
|
||||
float C1[][] = new float[ST_QT_NUM][ST_QT_NUM];
|
||||
float tmp1[] = new float[ST_QT_NUM];
|
||||
float tmp2[] = new float[ST_QT_NUM];
|
||||
boolean blZhqzfFlag = true;
|
||||
try {
|
||||
int i, j, k;
|
||||
float t1, t2;
|
||||
|
||||
//求C
|
||||
for (i = 0; i < ST_QT_NUM; i++) {
|
||||
tmp1[i] = 0;
|
||||
for (j = 0; j < GRADE_NUM; j++)
|
||||
tmp1[i] += 2 * METHOD_NUM * Math.pow(Assess[i][j], 2);
|
||||
}
|
||||
for (i = 0; i < ST_QT_NUM; i++) {
|
||||
for (j = 0; j < ST_QT_NUM; j++) {
|
||||
if (i == j)
|
||||
C[i][j] = tmp1[i];
|
||||
else
|
||||
C[i][j] = 0;
|
||||
}
|
||||
}
|
||||
//求C的逆矩阵C1,由于C是对角矩阵,简化矩阵求逆
|
||||
for (i = 0; i < ST_QT_NUM; i++) {
|
||||
for (j = 0; j < ST_QT_NUM; j++) {
|
||||
if (i == j)
|
||||
C1[i][j] = (float) 1.0 / C[i][j];
|
||||
else
|
||||
C1[i][j] = 0;
|
||||
}
|
||||
}
|
||||
//求D
|
||||
for (i = 0; i < ST_QT_NUM; i++) {
|
||||
tmp1[i] = 0;
|
||||
for (k = 0; k < METHOD_NUM; k++)
|
||||
tmp1[i] += Weight[i][k];
|
||||
tmp2[i] = 0;
|
||||
for (j = 0; j < GRADE_NUM; j++) {
|
||||
tmp2[i] += tmp1[i] * Math.pow(Assess[i][j], 2);
|
||||
}
|
||||
D[i] = 2 * tmp2[i];
|
||||
}
|
||||
//e赋值
|
||||
for (i = 0; i < ST_QT_NUM; i++)
|
||||
e[i] = 1;
|
||||
//计算eT*C1
|
||||
for (i = 0; i < ST_QT_NUM; i++) {
|
||||
tmp1[i] = 0;
|
||||
for (j = 0; j < ST_QT_NUM; j++)
|
||||
tmp1[i] += e[i] * C1[j][i];
|
||||
}
|
||||
t1 = 0;
|
||||
for (i = 0; i < ST_QT_NUM; i++)
|
||||
t1 += tmp1[i] * e[i];
|
||||
t2 = 0;
|
||||
for (i = 0; i < ST_QT_NUM; i++)
|
||||
t2 += tmp1[i] * D[i];
|
||||
for (i = 0; i < ST_QT_NUM; i++)
|
||||
e[i] = e[i] * ((1 - t2) / t1);
|
||||
for (i = 0; i < ST_QT_NUM; i++)
|
||||
D[i] = D[i] + e[i];
|
||||
//求A
|
||||
for (i = 0; i < ST_QT_NUM; i++) {
|
||||
A[i] = 0;
|
||||
for (j = 0; j < ST_QT_NUM; j++)
|
||||
A[i] += C1[i][j] * D[j];
|
||||
}
|
||||
} catch (Exception ex) {
|
||||
logger.error(ex.getMessage());
|
||||
blZhqzfFlag = false;
|
||||
}
|
||||
return blZhqzfFlag;
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,38 @@
|
||||
package com.njcn.harmonic.utils;
|
||||
|
||||
import cn.hutool.core.util.StrUtil;
|
||||
import com.njcn.common.pojo.enums.response.CommonResponseEnum;
|
||||
import com.njcn.common.pojo.exception.BusinessException;
|
||||
import com.njcn.common.utils.EnumUtils;
|
||||
import com.njcn.harmonic.enums.HarmonicResponseEnum;
|
||||
|
||||
import javax.validation.constraints.NotNull;
|
||||
import java.util.Objects;
|
||||
|
||||
/**
|
||||
* @author hongawen
|
||||
* @version 1.0.0
|
||||
* @date 2021年12月20日 10:03
|
||||
*/
|
||||
public class HarmonicEnumUtil {
|
||||
|
||||
/**
|
||||
* 获取HarmonicResponseEnum实例
|
||||
*/
|
||||
public static HarmonicResponseEnum getHarmonicEnumResponseEnumByMessage(@NotNull Object value) {
|
||||
HarmonicResponseEnum harmonicResponseEnum;
|
||||
try {
|
||||
String message = value.toString();
|
||||
if(message.indexOf(StrUtil.C_COMMA)>0){
|
||||
value = message.substring(message.indexOf(StrUtil.C_COMMA)+1);
|
||||
}
|
||||
harmonicResponseEnum = EnumUtils.valueOf(HarmonicResponseEnum.class, value, HarmonicResponseEnum.class.getMethod(BusinessException.GET_MESSAGE_METHOD));
|
||||
return Objects.isNull(harmonicResponseEnum) ? HarmonicResponseEnum.HARMONIC_COMMON_ERROR : harmonicResponseEnum;
|
||||
} catch (NoSuchMethodException e) {
|
||||
throw new BusinessException(CommonResponseEnum.INTERNAL_ERROR);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
||||
Reference in New Issue
Block a user